This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256382 #14 Sep 08 2022 08:46:11 %S A256382 10,18,29,30,42,53,61,73,78,81,89,90,91,115,119,125,137,138,162,165, %T A256382 173,181,198,205,209,210,213,217,222,258,263,291,295,299,305,323,325, %U A256382 330,331,390,399,407,411,441,449,450,462,477,485,489,493,497,501,515,523 %N A256382 Numbers n such that n-4 and n+4 are semiprimes. %C A256382 A117328 is the subsequence of primes. %H A256382 Harvey P. Dale, <a href="/A256382/b256382.txt">Table of n, a(n) for n = 1..1000</a> %t A256382 Select[Range[600], PrimeOmega[# + 4] == PrimeOmega[# - 4] == 2 &] (* _Vincenzo Librandi_, Mar 29 2015 *) %t A256382 Flatten[Position[Partition[Table[If[PrimeOmega[n]==2,1,0],{n,600}],9,1],_?(#[[1]]==#[[9]]==1&),{1},Heads->False]]+4 (* _Harvey P. Dale_, Mar 29 2015 *) %o A256382 (PARI) lista(nn,m=4) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););} %o A256382 (Magma) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [6..750] | IsSemiprime(n+4) and IsSemiprime(n-4) ]; // _Vincenzo Librandi_, Mar 29 2015 %Y A256382 Cf. A001358 (semiprimes). %Y A256382 Cf. A117328 (with primes rather than semiprimes). %Y A256382 Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2). %Y A256382 Cf. A256381 (n-3 and n+3), A256383 (n-5 and n+5). %K A256382 nonn %O A256382 1,1 %A A256382 _Michel Marcus_, Mar 27 2015