This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256383 #17 Sep 08 2022 08:46:11 %S A256383 9,20,30,44,60,82,90,116,124,128,138,150,164,182,208,210,214,242,254, %T A256383 294,296,300,304,314,324,334,360,366,376,386,398,408,412,422,432,442, %U A256383 476,506,510,522,524,532,538,540,548,578,584,586,628,674,676,684 %N A256383 Numbers n such that n-5 and n+5 are semiprimes. %C A256383 It appears that there are no primes in this sequence. %C A256383 If n is odd, one of n+5 and n-5 is divisible by 4, so unless n = 9 it can't be a semiprime. Thus all terms except 9 are even. - _Robert Israel_, Apr 13 2020 %H A256383 Robert Israel, <a href="/A256383/b256383.txt">Table of n, a(n) for n = 1..10000</a> %p A256383 N:= 1000: # for terms <= N-5 %p A256383 PP:= select(isprime, {seq(i,i=3..N/3,2)}): %p A256383 P:= select(`<=`,PP,floor(sqrt(N))): %p A256383 SP:= {}: %p A256383 for p in P do %p A256383 PP:= select(`<=`,PP,N/p); %p A256383 SP:= SP union map(`*`,PP,p); %p A256383 od: %p A256383 R:= {9} union (map(`+`,SP,5) intersect map(`-`,SP,5)): %p A256383 sort(convert(R,list)); # _Robert Israel_, Apr 13 2020 %t A256383 Select[Range[2, 700], PrimeOmega[# + 5] == PrimeOmega[# - 5] == 2 &] (* _Vincenzo Librandi_, Mar 29 2015 *) %o A256383 (PARI) lista(nn,m=5) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););} %o A256383 (PARI) issemi(n)=bigomega(n)==2 %o A256383 list(lim)=my(v=List([9])); forprime(p=5,(lim-5)\3, if(issemi(3*p+10), listput(v,3*p+5))); forprime(p=29,(lim+5)\3, if(issemi(3*p-10), listput(v,3*p-5))); forstep(n=30,lim\=1,6, if(issemi(n-5) && issemi(n+5), listput(v, n))); Set(v) \\ _Charles R Greathouse IV_, Apr 13 2020 %o A256383 (Magma) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [6..700] | IsSemiprime(n+5) and IsSemiprime(n-5) ]; // _Vincenzo Librandi_, Mar 29 2015 %Y A256383 Cf. A001358 (semiprimes). %Y A256383 Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2). %Y A256383 Cf. A256381 (n-3 and n+3), A256382 (n-4 and n+4). %K A256383 nonn %O A256383 1,1 %A A256383 _Michel Marcus_, Mar 27 2015