cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256386 Numbers m such that m-2, m-1, m+1, m+2 cannot all be represented in the form x*y + x + y for values x, y with x >= y > 1.

Original entry on oeis.org

2, 3, 4, 5, 8, 11, 59, 1319, 1619, 4259, 5099, 6659, 6779, 11699, 12539, 21059, 66359, 83219, 88259, 107099, 110879, 114659, 127679, 130199, 140759, 141959, 144539, 148199, 149519, 157559, 161339, 163859, 175079, 186479, 204599, 230939, 249539, 267959, 273899, 312839
Offset: 1

Views

Author

Alex Ratushnyak, Mar 31 2015

Keywords

Comments

Indices of terms surrounded by pairs of zeros in A255361.
Conjectures:
1. A255361(a(n)) > 0 for n > 4.
2. All terms > 8 are primes.
3. All terms > 8 are terms of these supersequences: A118072, A171667, A176821, A181602, A181669.
From Lamine Ngom, Feb 12 2022: (Start)
For n > 4, a(n) is not a term of A254636. This means that a(n)-2, a(n)-1, a(n)+1 and a(n)+2 are adjacent terms in A254636.
Number of terms < 10^k: 5, 7, 7, 13, 19, 96, 441, 2552, ...
Conjecture 2 would follow if we establish the equivalence "t is in sequence" <=> "t is a term of b(n): lesser of twin primes pair p and q such that (p - 1)/2 and (q + 1)/2 are also a pair of twin primes (A077800)".
It appears that b(n) = a(n) for n > 5. Verified for all terms < 10^9. (End)

Examples

			9, 10, 12, 13 cannot be represented as x*y + x + y, where x >= y > 1. Therefore 11 is in the sequence.
		

Crossrefs

Formula

a(n) = A158870(n-5) - 2, n > 5 (conjectured). - Lamine Ngom, Feb 12 2022