A256395 Composite Markoff numbers.
34, 169, 194, 610, 985, 1325, 4181, 6466, 9077, 10946, 14701, 37666, 51641, 62210, 75025, 135137, 195025, 196418, 294685, 499393, 646018, 925765, 1136689, 1278818, 1346269, 1441889, 2012674, 2423525, 3524578, 4400489, 6625109, 7453378, 8399329, 9227465, 9647009
Offset: 1
Keywords
Links
- J. Bourgain, A. Gamburd, and P. Sarnak, Markoff triples and strong approximation, arXiv:1505.06411 [math.NT], 2015.
Programs
-
Mathematica
Rest[Select[m = {1}; Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[-4*x^2 - 4*y^2 + 9*x^2*y^2])/2; b = (3*x*y + Sqrt[-4*x^2 - 4*y^2 + 9*x^2*y^2])/2; If[IntegerQ[a], m = Union[Join[m, {a}]]]; If[IntegerQ[b], m = Union[Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}]; Take[m, 50], ! PrimeQ[#] &]]
-
SageMath
def A386894List(len: int = 50, MAX: int = 10**10) -> list[int]: # Using function 'MarkovNumbers' from A002559. M = MarkovNumbers(len, MAX) U = set([]) for m in M: if not is_prime(ZZ(m)): U.add(m) return sorted(U)[1:len] # Balance required sequence length and search depth. print(A386894List(len=56)) # Peter Luschny, Aug 12 2025
Comments