This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256413 #25 Feb 16 2025 08:33:25 %S A256413 1,1,5,14,64,189,841 %N A256413 Number of n-dimensional Bravais lattices. %D A256413 H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Space. Wiley, NY, 1978, p. 52. %D A256413 P. Engel, "Geometric crystallography", in P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry. North-Holland, Amsterdam, Vol. B, pp. 989-1041. %D A256413 Lomont, J. S. "Crystallographic Point Groups." 4.4 in Applications of Finite Groups. New York: Dover, pp. 132-146, 1993. %D A256413 Yale, P. B. "Crystallographic Point Groups." 3.4 in Geometry and Symmetry. New York: Dover, pp. 103-108, 1988. %H A256413 D. Freittloh, <a href="http://arxiv.org/abs/1305.1798">Highly symmetric fundamental cells for lattices in R^2 and R^3</a>, arXiv.1305.1798 [math.CO], 2013. %H A256413 S. J. Heyes, <a href="http://web.archive.org/web/20120609152332im_/http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Lecture1/Bravais.gif">Illustration of the 14 possible 3-D Bravais lattices</a> from <a href="http://web.archive.org/web/20131007080827/http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Lecture1/Lec1.html">Lecture 1. Fundamental Aspects of Solids & Sphere Packing. - Analysing a 3D solid</a> %H A256413 Opgenorth, J; Plesken, W; Schulz, T, <a href="https://doi.org/10.1107/S010876739701547X">Crystallographic Algorithms and Tables</a>, Acta Crystallogr. A, 54 (1998), 517-531. %H A256413 Pegg, Ed Jr., <a href="https://mathworld.wolfram.com/BravaisLattice.html">Bravais Lattice.</a> %H A256413 W. Plesken and W. Hanrath, <a href="http://dx.doi.org/10.1090/S0025-5718-1984-0758205-5">The lattices of six-dimensional Euclidean space</a>, Math. Comp., 43 (1984), 573-587. [Warning: gives wrong value for a(6).] %H A256413 B. Souvignier, <a href="http://dx.doi.org/10.1107/S0108767303004161">Enantiomorphism of Crystallographic Groups in Higher Dimensions with Results in Dimensions Up to 6</a>, Acta Cryst. A 59, 210-220, 2003. %H A256413 Bernd Souvignier, <a href="http://www.crystallography.fr/mathcryst/pdf/havana/Souvignier_syllabus.pdf">Space groups</a>, 2007, p. 30 %Y A256413 Cf. A004029. %Y A256413 A004030 is an incorrect version found in the literature. %K A256413 nonn,hard,more %O A256413 0,3 %A A256413 _N. J. A. Sloane_, Apr 04 2015