This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256439 #27 Jul 16 2025 20:45:48 %S A256439 3,5,17,26,171,257,265,1921,9385,26665,65537,263041,437761,1057801, %T A256439 2038648321,10866583226,11453097097,982923711145 %N A256439 Numbers k such that phi(k-1)+1 divides sigma(k). %C A256439 Numbers k such that A000010(k-1)+1 divides A000203(k). %C A256439 Supersequence of Fermat primes (A019434). %C A256439 Supersequence of A256444. Corresponding values of numbers k(n) = sigma(n) / (phi(n-1)+1) : 2, 2, 2, 2, 4, 2, 4, 4, 4, 4, 2, 4, 4, 4, ... - _Jaroslav Krizek_, Mar 31 2015 %C A256439 a(19) > 10^13. - _Giovanni Resta_, Jul 13 2015 %e A256439 17 is in the sequence because phi(16) + 1 divides sigma(17); 9 divides 18. %p A256439 with(numtheory): A256439:=n->`if`(sigma(n) mod (phi(n-1)+1) = 0, n, NULL): seq(A256439(n), n=2..10^5); # _Wesley Ivan Hurt_, Mar 29 2015 %t A256439 Select[Range@ 1000000, Mod[DivisorSigma[1, #], EulerPhi[# - 1] + 1] == 0 &] (* _Michael De Vlieger_, Mar 29 2015 *) %o A256439 (Magma) [n: n in [2..1000000] | Denominator(SumOfDivisors(n) / (EulerPhi(n-1) + 1)) eq 1 ]; %o A256439 (PARI) lista(nn) = {for (n=2, nn, if (sigma(n) % (eulerphi(n-1)+1) == 0, print1(n, ", ")););} \\ _Michel Marcus_, Mar 29 2015 %Y A256439 Cf. A000010, A000203, A019434. %K A256439 nonn,more %O A256439 1,1 %A A256439 _Jaroslav Krizek_, Mar 29 2015 %E A256439 a(15)-a(18) from _Giovanni Resta_, Jul 13 2015