This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256478 #15 Apr 19 2015 22:23:43 %S A256478 0,1,1,2,2,1,2,3,3,2,2,3,1,2,3,4,4,3,3,3,2,2,4,2,3,3,4,1,2,3,4,5,5,4, %T A256478 4,4,3,3,4,3,3,3,5,2,2,4,3,4,2,4,5,3,3,2,3,4,4,5,1,2,3,4,5,6,6,5,5,5, %U A256478 4,4,5,4,4,4,5,3,3,4,4,4,3,4,6,3,3,3,3,5,5,4,2,2,4,3,5,3,4,5,6,2,4,4,4,5,3,4,3,3,2,5,5,3,6,2,4,4,3,4,5,5,6,1,2,3,4,5,6,7,7 %N A256478 a(0) = 0; and for n >= 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)). %C A256478 a(n) tells how many nonzero terms of A005187 are encountered when traversing toward the root of binary tree A233276, starting from the node containing n. This count includes both n (in case it is a term of A005187) and 1 (but not 0). See also comments in A256479 and A256991. %C A256478 The 1's (seem to) occur at positions given by A000325. %H A256478 Antti Karttunen, <a href="/A256478/b256478.txt">Table of n, a(n) for n = 0..16384</a> %F A256478 a(0) = 0; and for n >= 1, if A079559(n) = 1, then a(n) = 1 + a(A213714(n)-1), otherwise a(n) = a(A234017(n)). %F A256478 a(n) = A000120(A233277(n)). [Binary weight of A233277(n).] %F A256478 Other identities and observations. For all n >= 1: %F A256478 a(n) = 1 + A257248(n) = 1 + A080791(A233275(n)). %F A256478 a(n) = A070939(n) - A256479(n). %F A256478 a(n) >= A255559(n). %o A256478 (Scheme, with memoization-macro definec) %o A256478 (definec (A256478 n) (if (< n 1) n (+ (A079559 n) (A256478 (if (zero? (A079559 n)) (A234017 n) (+ -1 (A213714 n))))))) %o A256478 ;; Alternative definitions: %o A256478 (define (A256478 n) (A000120 (A233277 n))) %o A256478 (define (A256478 n) (if (zero? n) n (+ 1 (A080791 (A233275 n))))) %Y A256478 One more than A257248. %Y A256478 Cf. A000120, A000325, A005187, A070939, A079559, A080791, A213714, A234017, A233275, A233276, A233277, A255559, A256479, A256991. %K A256478 nonn %O A256478 0,4 %A A256478 _Antti Karttunen_, Apr 15 2015