This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256479 #14 Apr 19 2015 22:23:52 %S A256479 0,1,0,1,2,1,0,1,2,2,1,3,2,1,0,1,2,2,2,3,3,1,3,2,2,1,4,3,2,1,0,1,2,2, %T A256479 2,3,3,2,3,3,3,1,4,4,2,3,2,4,2,1,3,3,4,3,2,2,1,5,4,3,2,1,0,1,2,2,2,3, %U A256479 3,2,3,3,3,2,4,4,3,3,3,4,3,1,4,4,4,4,2,2,3,5,5,3,4,2,4,3,2,1,5,3,3,3,2,4,3,4,4,5,2,2,4,1,5,3,3,4,3,2,2,1,6,5,4,3,2,1,0,1 %N A256479 a(1) = 0, and for n > 1, if A079559(n) = 0, then a(n) = 1 + a(A234017(n)), otherwise a(n) = a(A213714(n)-1). %C A256479 a(n) tells how many terms of A055938 are encountered when traversing toward the root of binary tree A233276, starting from the node containing n. This count includes also n in case it itself is a term of A055938. See also comments in A256478 and A256991. %H A256479 Antti Karttunen, <a href="/A256479/b256479.txt">Table of n, a(n) for n = 1..16384</a> %F A256479 a(1) = 0, and for n > 1, if A079559(n) = 0, then a(n) = 1 + a(A234017(n)), otherwise a(n) = a(A213714(n)-1). %F A256479 a(n) = A080791(A233277(n)). [Number of nonleading zeros in the binary representation of A233277(n).] %F A256479 Other identities. For all n >= 1: %F A256479 a(n) = A257249(n) - 1 = A000120(A233275(n)) - 1. %F A256479 a(n) = A070939(n) - A256478(n). %F A256479 a(A000225(n)) = 0. %o A256479 (Scheme, with memoization-macro definec) %o A256479 (definec (A256479 n) (if (<= n 1) 0 (+ (- 1 (A079559 n)) (A256479 (if (zero? (A079559 n)) (A234017 n) (+ -1 (A213714 n))))))) %o A256479 ;; Alternative definitions: %o A256479 (define (A256479 n) (A080791 (A233277 n))) %o A256479 (define (A256479 n) (+ -1 (A000120 (A233275 n)))) %Y A256479 One less than A257249. %Y A256479 Cf. A000120, A055938, A070939, A079559, A080791, A213714, A234017, A233275, A233276, A233277, A256478, A256991. %Y A256479 Cf. also A000225 (gives the positions zeros). %K A256479 nonn %O A256479 1,5 %A A256479 _Antti Karttunen_, Apr 15 2015