This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256495 #40 Jul 26 2020 19:25:33 %S A256495 0,1,2,11,101,111,1001,1111,10001,10101,11011,100001,101101,110011, %T A256495 1000001,1001001,1010101,1100011,10000001,10011001,10100101,11000011, %U A256495 100000001,100010001,100101001,101000101,110000011,1000000001,1000110001,1001001001,1010000101 %N A256495 Palindromes i such that 2*i^2 is a palindrome. %C A256495 Subsequence of palindromes of A256437. %C A256495 The sequence contains all positive integers of the form: m*10^(i + NumberOfDigit(m)) + m where i is any nonnegative integer and m is any term of A000533. %C A256495 Also contains 1 + 10^i and 1 + 10^i + 10^(2*i) for all i >= 1. Are there any members with more than four 1's, or any members other than 2 with digits other than 0's and 1's? - _Robert Israel_, Apr 13 2015 %H A256495 Lars Blomberg, <a href="/A256495/b256495.txt">Table of n, a(n) for n = 1..91</a> %e A256495 Palindrome 11 is in the sequence because 2*11^2 = 242, a palindrome. %p A256495 dmax:= 11: # to get all terms with at most dmax digits %p A256495 revdigs:= proc(n) %p A256495 local L,i; %p A256495 L:= convert(n,base,10); %p A256495 add(10^(i-1)*L[-i],i=1..nops(L)); %p A256495 end proc: %p A256495 filter:= proc(n) local L; %p A256495 L:= convert(2*n^2,base,10); %p A256495 L = ListTools:-Reverse(L) %p A256495 end proc: %p A256495 A:= {}: %p A256495 for d from 1 to dmax do %p A256495 if d::even then %p A256495 A:= A union select(filter, {seq(10^(d/2)*x + revdigs(x), x=10^(d/2-1)..10^(d/2)-1)}) %p A256495 else %p A256495 m:= (d-1)/2; %p A256495 A:= A union select(filter, {seq(seq(10^(m+1)*x + y*10^m + revdigs(x), y=0..9),x=10^(m-1)..10^m-1)}) %p A256495 fi %p A256495 od: %p A256495 A; # if using Maple 11 or earlier, uncomment the next line %p A256495 # sort(convert(A,list)); # _Robert Israel_, Apr 13 2015 %t A256495 palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[ %t A256495 Range@ 10000000, palQ@ # && palQ[#^2 + FromDigits[Reverse@ IntegerDigits@ #]^2] &] (* _Michael De Vlieger_, Mar 31 2015 *) %t A256495 Select[Range[0,10101*10^5],AllTrue[{#,2#^2},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 26 2020 *) %o A256495 (PARI) ispal(n) = my(d = digits(n)); Vecrev(d) == d; %o A256495 lista(nn) = {for (n=0, nn, if (ispal(n) && ispal(2*n^2), print1(n, ", ")););} \\ _Michel Marcus_, Mar 31 2015 %Y A256495 Cf. A256437. %K A256495 nonn,base %O A256495 1,3 %A A256495 _Bui Quang Tuan_, Mar 31 2015 %E A256495 a(19)-a(22) from _Michel Marcus_, Mar 31 2015 %E A256495 a(23)-a(31) from _Lars Blomberg_, Apr 13 2015