cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256514 Decimal expansion of the amplitude of a simple pendulum the period of which is twice the period in the small-amplitude approximation.

Original entry on oeis.org

2, 7, 8, 8, 2, 3, 1, 1, 2, 4, 1, 0, 7, 2, 0, 4, 3, 0, 1, 4, 2, 1, 5, 2, 1, 8, 4, 7, 5, 3, 0, 8, 9, 0, 7, 2, 7, 6, 1, 5, 9, 0, 8, 7, 2, 5, 4, 6, 4, 9, 4, 9, 3, 0, 5, 4, 6, 8, 7, 1, 8, 8, 5, 6, 6, 6, 0, 6, 7, 2, 2, 6, 5, 6, 5, 9, 0, 5, 8, 0, 4, 4, 7, 2, 5, 0, 2, 7, 9, 1, 7, 5, 7, 8, 8, 4, 0, 6, 7, 5, 7, 2
Offset: 1

Views

Author

Jean-François Alcover, Apr 01 2015

Keywords

Examples

			2.7882311241072043014215218475308907276159087254649493...
= 159.75387571836004625994511811959034206912586138415864587... in degrees.
		

Crossrefs

Programs

  • Mathematica
    a2 = a /. FindRoot[ (2*EllipticK[ Sin[a/2]^2 ])/Pi == 2, {a, 3}, WorkingPrecision -> 102]; RealDigits[a2] // First
  • PARI
    solve(x=2,3,1/agm(cos(x/2),1)-2) \\ Charles R Greathouse IV, Mar 03 2016

Formula

Solution to (2*K(sin(a/2)^2))/Pi = 2, where K is the complete elliptic integral of the first kind.
Also solution to 1/AGM(1, cos(a/2)) = 2, where AGM is the arithmetic-geometric mean.