A256518 Consider numbers n = concat(x,y,z) such that the product x*y*z | n. Leading zeros in y and z allowed. Sequence lists numbers that admit different concatenations.
2112, 4224, 11110, 13104, 16128, 17136, 21120, 23184, 27216, 32256, 42240, 70224, 76608, 79632, 92736, 100128, 101101, 101808, 110110, 111100, 111375, 127008, 130104, 131040, 161280, 170170, 171360, 200112, 211200, 231840, 272160, 301125, 322560, 391092, 422400
Offset: 1
Examples
Only 2 or 3 different concatenations. Two different concatenations: 92736 = concat(9*2*736) and 92736 / (9*2*736) = 7; 92736 = concat(92*7*36) and 92736 / (92*7*36) = 4. Three different concatenations: 23184 = concat(2,3,184) and 23184 / (2*3*184) = 21; 23184 = concat(23,1,84) and 23184 / (23*1*84) = 12; 23184 = concat(23,18,4) and 23184 / (23*18*4) = 14. The six concatenations of 111111 are excluded because they are basically just one: 1*11*111; 1*111*11; 11*1*111; 11*111*1; 111*1*11; 111*11*1 and 111111 / (1*11*111) = 91.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory); P:=proc(q) local a,ab,b,c,i,j,k,m,n,v,w; v:=array(1..10,1..3); w:=[];for n from 1 to q do j:=0; for i from 1 to ilog10(n) do c:=(n mod 10^i); ab:=trunc(n/10^i); for k from 1 to ilog10(ab) do a:=trunc(ab/10^k); b:=ab-a*10^k; if a*b*c>0 then if type(n/(a*b*c),integer) then j:=j+1; w:=sort([a,b,c]); for m from 1 to 3 do v[j,m]:=w[m]; od; for m from 1 to j-1 do if v[m,1]=v[j,1] and v[m,2]=v[j,2] and v[m,3]=v[j,3] then j:=j-1; break; fi; od; fi; fi; od; od; if j>1 then print(n); fi; od; end: P(10^9);
-
Mathematica
fQ[n_] := Block[{id = IntegerDigits@ n}, lng = Length@ id; t = Times @@@ Union[Sort /@ Partition[ Flatten@ Table[{FromDigits@ Take[id, {1, i}], FromDigits@ Take[id, {i + 1, j}], FromDigits@ Take[id, {j + 1, lng}]}, {i, 1, lng - 2}, {j, i + 1, lng - 1}], 3]]; Count[IntegerQ /@ (n/t), True] > 1]; k = 100; lst = {}; While[k < 1000001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Apr 09 2015 *)
Comments