cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256518 Consider numbers n = concat(x,y,z) such that the product x*y*z | n. Leading zeros in y and z allowed. Sequence lists numbers that admit different concatenations.

Original entry on oeis.org

2112, 4224, 11110, 13104, 16128, 17136, 21120, 23184, 27216, 32256, 42240, 70224, 76608, 79632, 92736, 100128, 101101, 101808, 110110, 111100, 111375, 127008, 130104, 131040, 161280, 170170, 171360, 200112, 211200, 231840, 272160, 301125, 322560, 391092, 422400
Offset: 1

Views

Author

Paolo P. Lava, Apr 01 2015

Keywords

Comments

If n belongs to the sequence also n*10^k does.
Two concatenations are considered different when one of them is not a permutation of the other. E.g.: (6,2,22,5) and (6,22,2,5) are not different.

Examples

			Only 2 or 3 different concatenations.
Two different concatenations:
92736 = concat(9*2*736) and 92736 / (9*2*736) = 7;
92736 = concat(92*7*36) and 92736 / (92*7*36) = 4.
Three different concatenations:
23184 = concat(2,3,184) and 23184 / (2*3*184) = 21;
23184 = concat(23,1,84) and 23184 / (23*1*84) = 12;
23184 = concat(23,18,4) and 23184 / (23*18*4) = 14.
The six concatenations of 111111 are excluded because they are basically just one: 1*11*111; 1*111*11; 11*1*111; 11*111*1; 111*1*11; 111*11*1 and 111111 / (1*11*111) = 91.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,ab,b,c,i,j,k,m,n,v,w;
    v:=array(1..10,1..3); w:=[];for n from 1 to q do j:=0;
    for i from 1 to ilog10(n) do c:=(n mod 10^i); ab:=trunc(n/10^i);
    for k from 1 to ilog10(ab) do a:=trunc(ab/10^k); b:=ab-a*10^k;
    if a*b*c>0 then if type(n/(a*b*c),integer) then j:=j+1;
    w:=sort([a,b,c]); for m from 1 to 3 do v[j,m]:=w[m]; od;
    for m from 1 to j-1 do if v[m,1]=v[j,1] and v[m,2]=v[j,2] and v[m,3]=v[j,3]
    then j:=j-1; break; fi; od; fi; fi; od; od;
    if j>1 then print(n); fi; od; end: P(10^9);
  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@ n}, lng = Length@ id; t = Times @@@ Union[Sort /@ Partition[ Flatten@ Table[{FromDigits@ Take[id, {1, i}], FromDigits@ Take[id, {i + 1, j}], FromDigits@ Take[id, {j + 1, lng}]}, {i, 1, lng - 2}, {j, i + 1, lng - 1}], 3]]; Count[IntegerQ /@ (n/t), True] > 1]; k = 100; lst = {}; While[k < 1000001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Apr 09 2015 *)