cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256522 Decimal expansion of the dimensionless Blasius coefficient 0.332... in the formula for the shear stress on a flat plate in a boundary layer flow.

This page as a plain text file.
%I A256522 #29 May 20 2023 23:16:23
%S A256522 3,3,2,0,5,7,3,3,6,2,1,5,1,9,6,2,9,8,9,3,7,1,8,0,0,6,2,0,1,0,5,8,2,9,
%T A256522 6,6,5,4,7,0,9,3,5,6,1,4,1,2,6,7,9,8,1,8,1,0,0,4,4,7,5,6,4,0,1,9,8,7,
%U A256522 2,4,1,7,4,0,1,8,0,6,4,4,0,5,0,7,0,4,9,0,7,3,1,8,5,5,1,4,6,3,6,8
%N A256522 Decimal expansion of the dimensionless Blasius coefficient 0.332... in the formula for the shear stress on a flat plate in a boundary layer flow.
%H A256522 Asaithambi Asai, <a href="http://dx.doi.org/10.1016/j.cam.2004.07.013">Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients</a>, J. Comput. Appl. Math. 176 (2005), 203-214.
%H A256522 Heinrich Blasius, <a href="https://iris.univ-lille.fr/handle/1908/2024">Grenzschichten in Flüssigkeiten mit kleiner Reibung</a>, Z. Math. u. Physik 56 (1908), 1-37.
%H A256522 Heinrich Blasius, <a href="http://naca.central.cranfield.ac.uk/reports/1950/naca-tm-1256.pdf">Grenzschichten in Flüssigkeiten mit kleiner Reibung</a>, Z. Math. u. Physik 56 (1908), 1-37 [English translation by J. Vanier on behalf of the National Advisory Committee for Aeronautics (NACA), 1950].
%H A256522 John P. Boyd, <a href="https://projecteuclid.org/euclid.em/1047262359">The Blasius function in the complex plane</a>, Experimental Mathematics 8(4) (1999), 381-394.
%H A256522 Stephen Childress, <a href="http://www.math.nyu.edu/faculty/childres/fluidsbook.pdf">An Introduction to Theoretical Fluid Dynamics</a>, p. 124.
%H A256522 V. P. Varin, <a href="https://doi.org/10.1134/S096554251406013X">A solution to Blasius problem</a>, Computational Mathematics and Mathematical Physics 54(6) (2014), 1025-1036. [The author gives rational approximations to the constant.]
%H A256522 Wikipedia, <a href="http://en.wikipedia.org/wiki/Blasius_boundary_layer">Blasius boundary layer</a>.
%F A256522 b = g'(oo)^(-3/2) where g is the solution to the o.d.e. (1/2)*g*g'' + g''' = 0, with g(0) = g'(0) = 0 and g''(0) = 1 (a variant of the Blasius equation (1/2)*f*f'' + f''' = 0).
%e A256522 0.332057336215196298937180062010582966547093561412679818100447564...
%t A256522 m = 24; digits = 100; g = NDSolveValue[1/2*G[eta]*G''[eta] + G'''[eta] == 0 && G[0] == 0 && G'[0] == 0 && G''[0] == 1, G, {eta, 0, m}, WorkingPrecision -> 2 digits, Method -> "StiffnessSwitching"]; b = g'[m]^(-3/2); RealDigits[b, 10, digits][[1]] (* updated Sep 18 2016 *)
%K A256522 nonn,cons
%O A256522 0,1
%A A256522 _Jean-François Alcover_, Apr 01 2015
%E A256522 Extended to 100 digits by _Jon E. Schoenfield_ (private email) then confirmed with Mathematica by _Jean-François Alcover_, Sep 18 2016