A256530 Number of ON cells at n-th stage in simple 2-dimensional cellular automaton (see Comments lines for definition).
0, 1, 9, 21, 49, 61, 97, 157, 225, 237, 273, 333, 417, 525, 657, 813, 961, 973, 1009, 1069, 1153, 1261, 1393, 1549, 1729, 1933, 2161, 2413, 2689, 2989, 3313, 3661, 3969, 3981, 4017, 4077, 4161, 4269, 4401, 4557, 4737, 4941, 5169, 5421, 5697, 5997, 6321, 6669, 7041, 7437, 7857, 8301, 8769, 9261, 9777, 10317, 10881, 11469
Offset: 0
Examples
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins: 1; 9; 21, 49; 61, 97, 157, 225; 237, 273, 333, 417, 525, 657, 813, 961; ... Right border gives A060867. This triangle T(n,k) shares with the triangle A160414 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc. . Illustration of initial terms, for n = 1..10: . _ _ _ _ _ _ _ _ . | _ _ | | _ _ | . | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | | . | |_| _ _ _ _ _ _ _ _ _ _ _ _ |_| | . |_ _| | _ _ _ _ | | _ _ _ _ | |_ _| . | | | _ _ | | | | _ _ | | | . | | | | _|_|_|_|_|_|_ | | | | . | | | |_| _ _ _ _ |_| | | | . | | |_ _| | _|_|_ | |_ _| | | . | |_ _ _| |_| _ |_| |_ _ _| | . | _ _ _| _| |_| |_ |_ _ _ | . | | _ _| | |_ _ _| | |_ _ | | . | | | _| |_ _| |_ _| |_ | | | . | | | | |_ _ _ _ _ _ _| | | | | . | | | |_ _| | | | | |_ _| | | | . _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _ . | _| |_ _ _ _ _ _| |_ _ _ _ _ _| |_ | . | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | . | |_ _| | | |_ _| | . |_ _ _ _| |_ _ _ _| . After 10 generations there are 273 ON cells, so a(10) = 273.
Links
Crossrefs
Programs
-
Mathematica
With[{z=7},Join[{0},Flatten[Array[(2^#-1)^2+12Range[0,2^(#-1)-1]^2&,z]]]] (* Generates 2^z terms *) (* Paolo Xausa, Nov 15 2023, after Omar E. Pol *)
Formula
For i = 1 to z: for j = 0 to 2^(i-1)-1: n = n+1: a(n) = (2^i-1)^2 + 3*(2*j)^2: next j: next i
Comments