This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256534 #54 Nov 15 2023 15:06:45 %S A256534 0,4,16,28,64,76,112,172,256,268,304,364,448,556,688,844,1024,1036, %T A256534 1072,1132,1216,1324,1456,1612,1792,1996,2224,2476,2752,3052,3376, %U A256534 3724,4096,4108,4144,4204,4288,4396,4528,4684,4864,5068,5296,5548,5824,6124,6448,6796,7168,7564,7984,8428,8896,9388,9904,10444,11008 %N A256534 Number of ON cells at n-th stage in simple 2-dimensional cellular automaton (see Comments lines for definition). %C A256534 On the infinite square grid at stage 0 there are no ON cells, so a(0) = 0. %C A256534 At stage 1, four cells are turned ON forming a square, so a(1) = 4. %C A256534 If n is a power of 2 so the structure is a square of side length 2n that contains (2n)^2 ON cells. %C A256534 The structure grows by the four corners as square waves forming layers of ON cells up the next square structure, and so on (see example). %C A256534 Has the same rules as A256530 but here a(1) = 4 not 1. %C A256534 Has a smoother behavior than A160410 with which shares infinitely many terms (see example). %C A256534 A261695, the first differences, gives the number of cells turned ON at n-th stage. %H A256534 Michael De Vlieger, <a href="/A256534/b256534.txt">Table of n, a(n) for n = 0..16384</a> %H A256534 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2210.10968">Identities and periodic oscillations of divide-and-conquer recurrences splitting at half</a>, arXiv:2210.10968 [cs.DS], 2022, p. 37. %H A256534 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A256534 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %F A256534 For i = 1 to z: for j = 0 to 2^(i-1)-1: n = n+1: a(n) = 4^i + 3*(2*j)^2: next j: next i %F A256534 It appears that a(n) = 4 * A236305(n-1), n >= 1. %e A256534 With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins: %e A256534 4; %e A256534 16; %e A256534 28, 64; %e A256534 76, 112, 172, 256; %e A256534 268, 304, 364, 448, 556, 688, 844, 1024; %e A256534 ... %e A256534 Right border gives the elements of A000302 greater than 1. %e A256534 This triangle T(n,k) shares with the triangle A160410 the terms of the column k, if k is a power of 2, for example, both triangles share the following terms: 4, 16, 28, 64, 76, 112, 256, 268, 304, 448, 1024, etc. %e A256534 . %e A256534 Illustration of initial terms, for n = 1..10: %e A256534 . _ _ _ _ _ _ _ _ %e A256534 . | _ _ | | _ _ | %e A256534 . | | _|_|_ _ _ _ _ _ _ _ _ _ _ _|_|_ | | %e A256534 . | |_| _ _ _ _ _ _ _ _ _ _ _ _ |_| | %e A256534 . |_ _| | _ _ _ _ | | _ _ _ _ | |_ _| %e A256534 . | | | _ _ | | | | _ _ | | | %e A256534 . | | | | _|_|_|_ _|_|_|_ | | | | %e A256534 . | | | |_| _ _ _ _ |_| | | | %e A256534 . | | |_ _| | _|_ _|_ | |_ _| | | %e A256534 . | |_ _ _| |_| _ _ |_| |_ _ _| | %e A256534 . | | | | | | | | %e A256534 . | _ _ _| _| |_ _| |_ |_ _ _ | %e A256534 . | | _ _| | |_ _ _ _| | |_ _ | | %e A256534 . | | | _| |_ _| |_ _| |_ | | | %e A256534 . | | | | |_ _ _ _ _ _ _ _| | | | | %e A256534 . | | | |_ _| | | | | |_ _| | | | %e A256534 . _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _ %e A256534 . | _| |_ _ _ _ _ _| |_ _ _ _ _ _| |_ | %e A256534 . | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A256534 . | |_ _| | | |_ _| | %e A256534 . |_ _ _ _| |_ _ _ _| %e A256534 . %e A256534 After 10 generations there are 304 ON cells, so a(10) = 304. %t A256534 {0}~Join~Flatten@ Table[4^i + 3 (2 j)^2, {i, 6}, {j, 0, 2^(i - 1) - 1}] (* _Michael De Vlieger_, Nov 03 2022 *) %o A256534 (GW-BASIC) 10' a256534 First 2^z-1 terms: 20 z=6: defdbl a: for i=1 to z: for j=0 to 2^(i-1)-1: n=n+1: a(n)=4^i + 3*(2*j)^2: print a(n); : next j: next i: end %Y A256534 Cf. A000302, A011782, A139250, A147562, A160410, A160414, A236305, A256530, A261695. %K A256534 nonn,tabf %O A256534 0,2 %A A256534 _Omar E. Pol_, Apr 22 2015