This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256548 #11 Apr 12 2015 13:07:51 %S A256548 1,0,1,0,1,3,0,2,9,13,0,6,33,78,73,0,24,150,455,730,501,0,120,822, %T A256548 2925,6205,7515,4051,0,720,5292,21112,53655,87675,85071,37633,0,5040, %U A256548 39204,170716,494137,981960,1304422,1053724,394353 %N A256548 Triangle read by rows, T(n,k) = |n,k|*h(k), where |n,k| are the Stirling cycle numbers and h(k) = hypergeom([-k+1,-k],[],1), for n>=0 and 0<=k<=n. %F A256548 T(n,k) = A132393(n,k)*A000262(k). %F A256548 T(n,n) = A000262(n). %F A256548 T(n+1,1) = n!. %F A256548 Row sums are A088815. %F A256548 Alternating row sums are (-1)^n*A088819(n). %e A256548 Triangle starts: %e A256548 [1] %e A256548 [0, 1] %e A256548 [0, 1, 3] %e A256548 [0, 2, 9, 13] %e A256548 [0, 6, 33, 78, 73] %e A256548 [0, 24, 150, 455, 730, 501] %e A256548 [0, 120, 822, 2925, 6205, 7515, 4051] %o A256548 (Sage) %o A256548 A000262 = lambda n: simplify(hypergeometric([-n+1, -n], [], 1)) %o A256548 A256548 = lambda n,k: A000262(k)*stirling_number1(n,k) %o A256548 for n in range(7): [A256548(n,k) for k in (0..n)] %Y A256548 Cf. A000262, A088815, A088819, A132393, A256549. %K A256548 nonn,tabl,easy %O A256548 0,6 %A A256548 _Peter Luschny_, Apr 12 2015