This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256550 #8 Apr 19 2015 08:49:49 %S A256550 1,0,1,0,1,1,0,2,3,1,0,5,12,6,1,0,15,50,40,10,1,0,52,225,250,100,15,1, %T A256550 0,203,1092,1575,875,210,21,1,0,877,5684,10192,7350,2450,392,28,1,0, %U A256550 4140,31572,68208,61152,26460,5880,672,36,1 %N A256550 Triangle read by rows, T(n,k) = EL(n,k)/(n-k+1)! and EL(n,k) the matrix-exponential of the unsigned Lah numbers scaled by exp(-1), for n>=0 and 0<=k<=n. %F A256550 T(n+1,1) = Bell(n) = A000110(n). %F A256550 T(n+2,2) = C(n+2,2)*Bell(n) = A105479(n+2). %F A256550 T(n+1,n) = A000217(n). %F A256550 T(n+2,n) = A008911(n+1). %e A256550 Triangle starts: %e A256550 1; %e A256550 0, 1; %e A256550 0, 1, 1; %e A256550 0, 2, 3, 1; %e A256550 0, 5, 12, 6, 1; %e A256550 0, 15, 50, 40, 10, 1; %e A256550 0, 52, 225, 250, 100, 15, 1; %e A256550 0, 203, 1092, 1575, 875, 210, 21, 1; %o A256550 (Sage) %o A256550 def T(dim) : %o A256550 M = matrix(ZZ, dim) %o A256550 for n in range(dim) : %o A256550 M[n, n] = 1 %o A256550 for k in range(n) : %o A256550 M[n,k] = (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1)) %o A256550 E = M.exp()/exp(1) %o A256550 for n in range(dim) : %o A256550 for k in range(n) : %o A256550 M[n,k] = E[n,k]/factorial(n-k+1) %o A256550 return M %o A256550 T(8) # Computes the sequence as a lower triangular matrix. %Y A256550 Cf. A000110, A000217, A008911, A105479, A256551 (matrix inverse). %K A256550 nonn,tabl,easy %O A256550 0,8 %A A256550 _Peter Luschny_, Apr 01 2015