This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256553 #26 Jul 15 2021 19:35:15 %S A256553 1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,7,10,12,1, %T A256553 2,3,4,5,6,7,8,10,12,15,1,2,3,4,5,6,7,8,9,10,12,14,15,20,1,2,3,4,5,6, %U A256553 7,8,9,10,12,14,15,20,21,30 %N A256553 Triangle T(n,k) in which the n-th row contains the increasing list of distinct orders of degree-n permutations; n>=0, 1<=k<=A009490(n). %H A256553 Alois P. Heinz, <a href="/A256553/b256553.txt">Rows n = 0..60, flattened</a> %F A256553 Sum_{k>=0} T(n,k)*A256554(n,k) = A181844(n). %F A256553 T(n,k) = k for n>0 and 1<=k<=n. %e A256553 Triangle T(n,k) begins: %e A256553 1; %e A256553 1; %e A256553 1, 2; %e A256553 1, 2, 3; %e A256553 1, 2, 3, 4; %e A256553 1, 2, 3, 4, 5, 6; %e A256553 1, 2, 3, 4, 5, 6; %e A256553 1, 2, 3, 4, 5, 6, 7, 10, 12; %e A256553 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15; %e A256553 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20; %e A256553 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 30; %p A256553 b:= proc(n, i) option remember; `if`(n=0 or i=1, x, %p A256553 b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i), %p A256553 t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i))) %p A256553 end: %p A256553 T:= n->(p->seq((h->`if`(h=0, [][], i))(coeff(p, x, i)) %p A256553 , i=1..degree(p)))(b(n$2)): %p A256553 seq(T(n), n=0..12); %t A256553 b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x, %t A256553 b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i], %t A256553 {t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]]; %t A256553 T[n_] := Function[p, Table[Function[h, If[h == 0, Nothing, i]][ %t A256553 Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]]; %t A256553 Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jul 15 2021, after _Alois P. Heinz_ *) %Y A256553 Row sums give A060179. %Y A256553 Row lengths give A009490. %Y A256553 Last elements of rows give A000793. %Y A256553 Main diagonal gives A000027. %Y A256553 Cf. A181844, A256067, A256554. %K A256553 nonn,look,tabf %O A256553 0,4 %A A256553 _Alois P. Heinz_, Apr 01 2015