cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256555 Number of ways to write n as the sum of two (unordered) distinct elements of the set {floor(p/3): p is prime}.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 5, 7, 6, 6, 7, 7, 8, 7, 8, 9, 7, 10, 7, 7, 9, 9, 9, 9, 12, 11, 10, 12, 8, 10, 10, 10, 9, 9, 13, 11, 10, 13, 11, 11, 12, 10, 10, 14, 14, 12, 12, 15, 13, 13, 13, 12, 14, 14, 15, 14, 13, 19, 13, 13, 15, 11, 13, 13, 15, 16, 17, 19, 16, 16, 15, 17, 15, 15, 17, 17, 16, 20, 16, 16, 20, 17, 19, 17, 18, 20, 17, 21, 18
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 01 2015

Keywords

Comments

Conjecture: For any integer m > 2, every positive integer can be written as the sum of two distinct elements of the set {floor(p/m): p is prime}.
Note that Goldbach's conjecture essentially asserts that any integer n > 1 can be written as floor(p/2) + floor(q/2) with p and q prime.

Examples

			 a(4) = 2 since 4 = 0 + 4 = 1 + 3 with 0,1,3,4 elements of the set {floor(p/3): p is prime}. Note that floor(2/3) = 0, floor(3/3) = 1, floor(11/3) = 3 and floor(13/3) = 4.
		

Crossrefs

Programs

  • Mathematica
    S[n_]:=Union[Table[Floor[Prime[k]/3], {k,1,PrimePi[3n+2]}]]
    L[n_]:=Length[S[n]]
    Do[r=0;Do[If[Part[S[n],x]>=n/2,Goto[cc]];
    If[MemberQ[S[n], n-Part[S[n],x]]==True,r=r+1]; Continue,{x,1,L[n]}];Label[cc];Print[n," ",r];Continue, {n,1,100}]