This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256560 #23 Apr 03 2015 13:10:38 %S A256560 14,38,48,82,92,116,152,162,186,230,254,264,288,332,402,394,404,428, %T A256560 472,542,644,578,588,612,656,726,828,968,812,822,846,890,960,1062, %U A256560 1202,1386,1102,1112,1136,1180,1250,1352,1492,1676,1910 %N A256560 Triangle read by rows, sums of 2 distinct nonzero squares plus sums of 2 distinct nonzero cubes: T(n,k) = n^2 + k^2 + n^3 + k^3, 1 <= k <= n-1. %C A256560 All terms are even. %C A256560 T(n,1) = A011379(n) + 2. %C A256560 When n=k+1, T(n,k+1) = A011379(n-1) + A011379(n) = 2n^3 - n^2 + n. %F A256560 a(n) = A055096(n) + A256497(n-1). %F A256560 T(n,k) = T055096(n,k) + T256547(n-1,k). %F A256560 T(n,k) = T(n-1,k) + A049450(n). %F A256560 T(n,k) = T(n,k-1) + A049450(k). %F A256560 T(n,k) = A011379(n) + A011379(k). %e A256560 Triangle starts T(2,1): %e A256560 n\k 1 2 3 4 5 6 7 8 9 10 %e A256560 2: 14 %e A256560 3: 38 48 %e A256560 4: 82 92 116 %e A256560 5: 152 162 186 230 %e A256560 6: 254 264 288 332 402 %e A256560 7: 394 404 428 472 542 644 %e A256560 8: 578 588 612 656 726 828 968 %e A256560 9: 812 822 846 890 960 1062 1202 1386 %e A256560 10: 1102 1112 1136 1180 1250 1352 1492 1676 1910 %e A256560 11: 1454 1464 1488 1532 1602 1704 1844 2028 2262 2552 %e A256560 ... %e A256560 The successive terms are: (2^2 + 1^2 + 2^3 + 1^3), (3^2 + 1^2 + 3^3 + 1^3), (3^2 + 2^2 + 3^3 + 2^3), (4^2 + 1^2 + 4^3 + 1^3), (4^2 + 2^2 + 4^3 + 2^3), (4^2 + 3^2 + 4^3 + 3^3), ... %e A256560 T(7,4) = 472 because 7^2 + 7^3 + 4^2 + 4^3 = 472. %Y A256560 Cf. A055096 (sums of 2 distinct nonzero squares), A256497 (sums of 2 distinct nonzero cubes), A011379, A024670, A004431, A049450. %K A256560 nonn,tabl %O A256560 2,1 %A A256560 _Bob Selcoe_, Apr 02 2015