cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256568 Decimal expansion of Integral_{0..Pi/2} x^2*log(cos(x))^2 dx, one of the log-cosine integrals related to zeta(3).

This page as a plain text file.
%I A256568 #5 Apr 02 2015 09:49:13
%S A256568 4,2,6,7,1,5,2,3,6,0,9,8,4,0,9,8,8,6,5,2,3,0,1,0,9,1,8,3,4,1,8,1,5,1,
%T A256568 2,7,8,9,2,7,8,3,3,9,5,8,0,9,2,0,5,9,1,8,2,8,5,0,5,1,6,7,0,9,8,0,3,4,
%U A256568 0,9,0,8,0,8,1,6,2,2,3,0,2,2,6,6,0,4,7,3,7,9,5,3,0,5,4,2,3,9,4,5,3,0,6,7,4
%N A256568 Decimal expansion of Integral_{0..Pi/2} x^2*log(cos(x))^2 dx, one of the log-cosine integrals related to zeta(3).
%H A256568 Mark W. Coffey, <a href="http://dx.doi.org/10.1016/S0377-0427(03)00438-2">On some log-cosine integrals related to zeta(3), zeta(4), and zeta(6)</a>, Journal of Computational and Applied Mathematics 159 (2003) p. 207.
%F A256568 Pi/1440*(11*Pi^4 + 60*Pi^2*log(2)^2 + 720*log(2)*zeta(3)).
%e A256568 4.26715236098409886523010918341815127892783395809205918285...
%t A256568 Pi/1440*(11*Pi^4 + 60*Pi^2*Log[2]^2 + 720*Log[2]*Zeta[3]) // RealDigits[#, 10, 105]& // First
%Y A256568 Cf. A002117.
%K A256568 nonn,cons,easy
%O A256568 1,1
%A A256568 _Jean-François Alcover_, Apr 02 2015