cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256580 Number of quadruples (x, x+1, x+2, x+3) with 1 < x < p-3 of consecutive integers whose product is 1 mod p.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 3, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 4, 2, 0, 2, 0, 0, 2, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 4, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 4, 2, 2, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 2, 0, 0, 4, 4, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 4, 0, 2, 2, 0, 0, 4, 4, 0, 4, 2, 0, 0
Offset: 1

Views

Author

Marian Kraus, Apr 02 2015

Keywords

Comments

If "quadruples" is changed to "pairs" we get A086937 (for the counts) and A038872 (for the primes for which the count is nonzero).

Examples

			p=7, x_1=2, 2*3*4*5 == 1 (mod 7), T={2}, |T|=1;
p=17, x_1=2, 2*3*4*5 == 1 (mod 17), x_2=12, 12*13*14*15 == 1 (mod 17), T={2,12}, |T|=2;
p=23, x_1=5, 5*6*7*8 == 1 (mod 23), x_2=15, 15*16*17*18 == 1 (mod 23), x_3=19, 19*20*21*22 == 1 (mod 23), T={5,15,19}, |T|=3.
		

Crossrefs

Programs

  • R
    library(numbers);IP <- vector();t <- vector();S <- vector();IP <- c(Primes(1000));for (j in 1:(length(IP))){for (i in 2:(IP[j]-4)){t[i-1] <-as.vector(mod((i*(i+1)*(i+2)*(i+3)),IP[j]));Z[j] <- sum(which(t==1));S[j] <- length(which(t==1))}};S

Formula

|T| where T = {x|x*(x+1)*(x+2)*(x+3) == 1 mod p, p is prime, 1 < x < p-3}.