cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256587 Number of ways to write n = r + s + t, where r,s,t are elements of the set {floor(k*(k+1)/4): k = 1,2,3,...} with s odd and r <= s <= t.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 3, 2, 4, 2, 4, 2, 5, 3, 4, 3, 3, 5, 3, 4, 2, 6, 2, 4, 1, 6, 2, 4, 1, 4, 2, 3, 3, 2, 3, 1, 3, 2, 4, 1, 3, 1, 3, 2, 4, 1, 3, 1, 3, 1, 4, 2, 4, 1, 3, 2, 3, 3, 3, 3, 2, 3, 2, 5, 4, 3, 3, 4, 3, 5, 5, 4, 3, 5, 3, 6, 6, 5, 4, 7, 3, 6, 4, 7, 4, 8, 3, 7, 5, 6, 7, 6, 5, 6, 6, 6, 7, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 02 2015

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1.
(ii) If the ordered pair (b,c) is among (1,2), (1,3), (1,4), (1,5), (1,6), (1,8), (1,9), (2,2) and (2,3), then each nonnegative integer can be written as r + b*s + c*t, where r,s,t belong to the set S = {floor(k*(k+1)/4): k = 1, 2, 3, ...}.
We have shown that if b and c are positive integers with b <= c such that every n = 0,1,2,... can be written as r + b*s + c*t with r,s,t in the above set S, then the ordered pair (b,c) must be among (1,1), (1,2,), (1,3), (1,4), (1,5), (1,6), (1,8), (1,9), (2,2) and (2,3).

Examples

			 a(27) = 1 since 27 = 0 + 5 + 22 = floor(1*2/4) + floor(4*5/4) + floor(9*10/4).
a(56) = 1 since 56 = 1 + 3 + 52 = floor(2*3/4) + floor(3*4/4) + floor(14*15/4).
		

Crossrefs

Programs

  • Mathematica
    S[n_]:=Union[Table[Floor[k*(k+1)/4],{k,1,(Sqrt[16n+13]-1)/2}]]
    L[n_]:=Length[S[n]]
    Do[r=0;Do[If[Part[S[n],x]>n/3,Goto[cc]];Do[If[Part[S[n],x]+2*Part[S[n],y]>n,Goto[bb]];
    If[Mod[Part[S[n],y],2]==1&&MemberQ[S[n], n-Part[S[n],x]-Part[S[n],y]]==True,r=r+1];
    Continue,{y,x,L[n]}];Label[bb];Continue,{x,1,L[n]}];Label[cc];Print[n," ",r];Continue, {n,1,100}]