cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256588 a(n) is the n-th sign-change in the sequence of the constants b(n) defined as the coefficients of a Newton interpolation series associated to zeta(s)-1/(s-1).

Original entry on oeis.org

3, 7, 13, 21, 29, 40, 52, 65, 80, 97, 115, 135, 157, 180, 204, 230, 258, 287, 318, 350, 384, 420, 457, 496, 536, 578, 621, 666, 713, 761, 810, 862, 915, 969, 1025, 1082, 1142, 1202, 1264, 1328, 1394, 1461, 1529, 1599, 1671, 1744, 1819, 1895, 1973
Offset: 1

Views

Author

Jean-François Alcover, Apr 03 2015

Keywords

Examples

			b(1) = 1/2 - EulerGamma < 0,
b(2) = -1/2 - 2*EulerGamma + Pi^2/6 < 0,
b(3) = -1/2 + 3*(-1/2 - EulerGamma) + Pi^2/2 - zeta(3) > 0, so a(1) = 3.
		

Crossrefs

Programs

  • Mathematica
    nmax = 2000; $MaxExtraPrecision = 1000; b[n_] := b[n] = n*(1 - EulerGamma - HarmonicNumber[n-1]) - 1/2 + Sum[Binomial[n, k]*(-1)^k*Zeta[k], {k, 2, n}]; Reap[ For[n = 1, n <= nmax, n++, If[b[n] < 0 < b[n+1] || b[n] > 0 > b[n+1], Print[n+1]; Sow[n+1]]]][[2, 1]]

Formula

zeta(s)-1/(s-1) = Sum_{n>=0} (-1)^n*b(n)*binomial(s,n).
b(n) = n*(1-EulerGamma - H(n-1)) - 1/2 + Sum_{k=2..n} binomial(n,k)*(-1)^k*zeta(k), where H(n) is the n-th harmonic number.