A256591 Decimal expansion of Xi''(1/2) = 0.02297..., the second derivative of the Riemann Xi function at 1/2.
0, 2, 2, 9, 7, 1, 9, 4, 4, 3, 1, 5, 1, 4, 5, 4, 3, 7, 5, 3, 5, 2, 4, 9, 8, 7, 6, 4, 9, 7, 6, 3, 2, 1, 7, 0, 2, 6, 4, 5, 9, 3, 0, 1, 3, 8, 3, 7, 5, 8, 9, 0, 6, 3, 4, 9, 9, 1, 4, 4, 6, 2, 2, 1, 6, 5, 1, 8, 3, 6, 3, 1, 8, 5, 8, 8, 9, 2, 5, 5, 3, 8, 0, 9, 6, 7, 0, 2, 2, 7, 6, 7, 1, 2, 1, 4, 1, 7, 8, 0, 3, 2, 3
Offset: 0
Examples
0.022971944315145437535249876497632170264593013837589... Are also listed in the Borwein paper the Xi derivatives of order 4 and 6: Xi^(4)(1/2) = 0.002962848433687632165368... Xi^(6)(1/2) = 0.000599295946597579491843...
References
- H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0) pp. 16-18
Links
- Jonathan M. Borwein, David M. Bradley, Richard E. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics 121 (2000) p. 289.
- Eric Weisstein's MathWorld, Xi-Function
- Wikipedia, Riemann Xi function
Crossrefs
Programs
-
Mathematica
d2 = (-(32*Pi^(1/4))^(-1))*Gamma[1/4]*((-32 + (Log[Pi] - PolyGamma[1/4])^2 + PolyGamma[1, 1/4])*Zeta[1/2] + 4*((-Log[Pi] + PolyGamma[1/4])*Zeta'[1/2] + Zeta''[1/2])); Join[{0}, First[RealDigits[d2, 10, 102]]]
Formula
Xi(s) = 1/2*s*(s-1)*Pi^(-s/2)*Gamma(s/2)*zeta(s).
Xi''(1/2) = (-(32*Pi^(1/4))^(-1))*Gamma(1/4)*((-32 + (log(Pi) - PolyGamma(1/4))^2 + PolyGamma(1, 1/4))*zeta(1/2) + 4*((-log(Pi) + PolyGamma(1/4))*zeta'(1/2) + zeta''(1/2))).
Comments