A256593 Decimal expansion of 1/Pi*Integral_{0..Pi} x^2*log(2*cos(x/2))^2 dx, one of the log-cosine integrals related to zeta(4).
5, 9, 5, 2, 7, 7, 7, 7, 8, 5, 4, 1, 1, 2, 6, 0, 0, 5, 3, 3, 3, 8, 0, 2, 0, 3, 3, 0, 9, 7, 6, 4, 2, 3, 4, 6, 5, 2, 6, 1, 1, 3, 0, 2, 3, 5, 5, 5, 2, 9, 9, 7, 9, 9, 2, 2, 5, 6, 3, 6, 9, 1, 8, 4, 9, 4, 2, 6, 6, 3, 3, 8, 9, 0, 2, 8, 3, 2, 8, 6, 5, 6, 0, 6, 3, 0, 0, 2, 9, 9, 7, 6, 7, 9, 3, 4, 9, 5, 4, 4, 7, 8
Offset: 1
Examples
5.952777785411260053338020330976423465261130235552997992256369...
Links
- David Borwein and Jonathan M. Borwein, On an Intriguing Integral and Some Series Related to Zeta(4), Proc. Amer. Math. Soc. 123 (1995), 1191-1198
Programs
-
Mathematica
RealDigits[11*Pi^4/180, 10, 102] // First
Formula
1/Pi*Integral_{0..Pi} x^2*log(2*cos(x/2))^2 dx = 11*Pi^4/180 = 11/2*zeta(4).