This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256605 #21 Jun 01 2025 09:57:56 %S A256605 3,4,20,12,84,120,360,360,3960,2520,32760,27720,27720,55440,942480, %T A256605 720720,13693680,12252240,12252240,12252240,281801520,232792560, %U A256605 1163962800,1163962800,3491888400,3491888400,101264763600,80313433200,2489716429200,4658179125600 %N A256605 Least k such that n+1 is the n-th divisor of k. %C A256605 The case n = 1 is not possible because the number 2 is never the first divisor of k (1 is the first divisor). %F A256605 a(n) = A003418(n+1)/A007917(n). - _Peter Munn_, May 14 2025 %e A256605 a(6) = 84 because the divisors of 84 are {1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84} and 7 is the 6th divisor of 84. %p A256605 with(numtheory):for n from 2 to 31 do:ii:=0:for k from 1 to 10^9 while(ii=0) do:x:=divisors(k):n1:=nops(x):if n<=n1 and x[n]=n+1 then ii:=1: printf ( "%d %d \n",n,k):else fi:od:od: %t A256605 nn=20;t=Table[0,{nn}];found=1;n=2;While[found<nn,n++;d=Divisors[n];Do[If[i<=nn&&d[[i]]==i+1&&t[[i]]==0,t[[i]]=n;found++],{i,Length[d]}]];Rest[t] %o A256605 (PARI) a(n) = {k = 1; ok = 0; while (!ok, d = divisors(k); if ((#d >= n) && (d[n] == n+1), ok = 1, k++);); k;} \\ _Michel Marcus_, Apr 04 2015 %Y A256605 Cf. A003418, A007917, A225562. %Y A256605 See A221647 for other sequences giving the smallest number whose n-th divisor satisfies some condition. %K A256605 nonn,easy %O A256605 2,1 %A A256605 _Michel Lagneau_, Apr 04 2015