cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256617 Numbers having exactly two distinct prime factors, which are also adjacent prime numbers.

This page as a plain text file.
%I A256617 #26 Aug 23 2021 00:38:53
%S A256617 6,12,15,18,24,35,36,45,48,54,72,75,77,96,108,135,143,144,162,175,192,
%T A256617 216,221,225,245,288,323,324,375,384,405,432,437,486,539,576,648,667,
%U A256617 675,768,847,864,875,899,972,1125,1147,1152,1215,1225,1296,1458,1517,1536,1573,1715,1728,1763,1859,1875,1944
%N A256617 Numbers having exactly two distinct prime factors, which are also adjacent prime numbers.
%H A256617 Reinhard Zumkeller, <a href="/A256617/b256617.txt">Table of n, a(n) for n = 1..10000</a>
%F A256617 A001222(a(n)) = 2.
%F A256617 A006530(a(n)) = A151800(A020639(n)) = A000040(A049084(A020639(a(n)))+1).
%F A256617 Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/A083553(n) = Sum_{n>=1} 1/((prime(n)-1)*(prime(n+1)-1)) = 0.7126073495... - _Amiram Eldar_, Dec 23 2020
%e A256617 .   n | a(n)                      n | a(n)
%e A256617 . ----+------------------       ----+------------------
%e A256617 .   1 |   6 = 2 * 3              13 |  77 = 7 * 11
%e A256617 .   2 |  12 = 2^2 * 3            14 |  96 = 2^5 * 3
%e A256617 .   3 |  15 = 3 * 5              15 | 108 = 2^2 * 3^3
%e A256617 .   4 |  18 = 2 * 3^2            16 | 135 = 3^3 * 5
%e A256617 .   5 |  24 = 2^3 * 3            17 | 143 = 11 * 13
%e A256617 .   6 |  35 = 5 * 7              18 | 144 = 2^4 * 3^2
%e A256617 .   7 |  36 = 2^2 * 3^2          19 | 162 = 2 * 3^4
%e A256617 .   8 |  45 = 3^2 * 5            20 | 175 = 5^2 * 7
%e A256617 .   9 |  48 = 2^4 * 3            21 | 192 = 2^6 * 3
%e A256617 .  10 |  54 = 2 * 3^3            22 | 216 = 2^3 * 3^3
%e A256617 .  11 |  72 = 2^3 * 3^2          23 | 221 = 13 * 17
%e A256617 .  12 |  75 = 3 * 5^2            24 | 225 = 3^2 * 5^2 .
%t A256617 Select[Range[2000], MatchQ[FactorInteger[#], {{p_, _}, {q_, _}} /; q == NextPrime[p]]&] (* _Jean-François Alcover_, Dec 31 2017 *)
%o A256617 (Haskell)
%o A256617 import Data.Set (singleton, deleteFindMin, insert)
%o A256617 a256617 n = a256617_list !! (n-1)
%o A256617 a256617_list = f (singleton (6, 2, 3)) $ tail a000040_list where
%o A256617    f s ps@(p : ps'@(p':_))
%o A256617      | m < p * p' = m : f (insert (m * q, q, q')
%o A256617                           (insert (m * q', q, q') s')) ps
%o A256617      | otherwise  = f (insert (p * p', p, p') s) ps'
%o A256617      where ((m, q, q'), s') = deleteFindMin s
%o A256617 (PARI) is(n) = if(omega(n)!=2, return(0), my(f=factor(n)[, 1]~); if(f[2]==nextprime(f[1]+1), return(1))); 0 \\ _Felix Fröhlich_, Dec 31 2017
%o A256617 (PARI) list(lim)=my(v=List(),c=sqrtnint(lim\=1,3),d=nextprime(c+1),p=2); forprime(q=3,d, for(i=1,logint(lim\q,p), my(t=p^i); while((t*=q)<=lim, listput(v,t))); p=q); forprime(q=d+1,lim\precprime(sqrtint(lim)), listput(v,p*q); p=q); Set(v) \\ _Charles R Greathouse IV_, Apr 12 2020
%o A256617 (Python)
%o A256617 from sympy import primefactors, nextprime
%o A256617 A256617_list = []
%o A256617 for n in range(1,10**5):
%o A256617     plist = primefactors(n)
%o A256617     if len(plist) == 2 and plist[1] == nextprime(plist[0]):
%o A256617         A256617_list.append(n) # _Chai Wah Wu_, Aug 23 2021
%Y A256617 Subsequence of A007774.
%Y A256617 Subsequences: A006094, A033845, A033849, A033851.
%Y A256617 Cf. A000040, A001222, A020639, A006530, A049084, A083553, A151800.
%K A256617 nonn
%O A256617 1,1
%A A256617 _Reinhard Zumkeller_, Apr 05 2015