This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256629 #13 Jan 14 2025 23:15:38 %S A256629 24,120,240,720,840,1320,2520,3360,3960,5280,6240,6840,9360,10920, %T A256629 14280,15600,16320,17160,18480,22440,24360,26520,31920,35880,38760, %U A256629 42840,43680,46200,50160,55200,57960,59280,70200,73920,91080,93840,100800,107640,117600,118320,122400 %N A256629 Integer areas A of integer-sided triangles such that the length of the circumradius is a prime number. %C A256629 Subsequence of A208984. %C A256629 For the same area, the number of triangles such that the length of the circumradius is a prime number is not unique; for example, from a(5)= 840 we find two triangles of sides (a,b,c)=(40,42,58) and (24,70,74) where R = 29 and 37, respectively. %C A256629 The circumradius R values corresponding to the terms of the sequence are 5, 13, 17, 41, (29 or 37), 61, 53, 113, 101, 73, 89, 181, 97, (109 or 197), 149, ... %C A256629 The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The circumradius R is given by R = abc/4A. %C A256629 Observation: %C A256629 - all sides of the triangles are even; %C A256629 - the inradius values are also even; %C A256629 - the first triangle, of sides (6,8,10), is the unique triangle in which the lengths of the inradius and the circumradius are both prime numbers (r = A/p = 24/12 = 2 and R = abc/4A = 480/4*24 = 5). %C A256629 For the same area, it is possible to find a prime inradius (see A230195), but the corresponding circumradius is generally rational. For example, for a(2) = 120, we find two triangles: %C A256629 (10,24,26) => r = 4 and R = 13; %C A256629 (16,25,39) => r = 3 prime and R = 65/2. %C A256629 The following table gives the first values (A, a, b, c, r, R) where A is the integer area, a,b,c are the sides and r = A/p, R = a*b*c/4*A are respectively the values of the inradius and the circumradius. %C A256629 +--------+------+-------+-------+------+-------+ %C A256629 | A | a | b | c | r | R | %C A256629 +--------+------+-------+-------+------+-------+ %C A256629 | 24 | 6 | 8 | 10 | 2 | 5 | %C A256629 | 120 | 10 | 24 | 26 | 4 | 13 | %C A256629 | 240 | 16 | 30 | 34 | 6 | 17 | %C A256629 | 720 | 18 | 80 | 82 | 8 | 41 | %C A256629 | 840 | 40 | 42 | 58 | 12 | 29 | %C A256629 | 840 | 24 | 70 | 74 | 10 | 37 | %C A256629 | 1320 | 22 | 120 | 122 | 10 | 61 | %C A256629 | 2520 | 56 | 90 | 106 | 20 | 53 | %C A256629 | 3360 | 30 | 224 | 226 | 14 | 113 | %C A256629 | 3960 | 40 | 198 | 202 | 18 | 101 | %C A256629 | 5280 | 96 | 110 | 146 | 30 | 73 | %C A256629 | 6240 | 78 | 160 | 178 | 30 | 89 | %C A256629 +--------+------+-------+-------+------+-------+ %e A256629 a(1) = 24 because, for (a,b,c) = (6, 8, 10) => s= (6+8+10)/2 =12, and %e A256629 A = sqrt(12(12-6)(12-8)(12-10)) = sqrt(576) = 24; %e A256629 R = abc/4A = 480/4*24 = 5 is prime. %Y A256629 Cf. A188158, A208984, A230195. %K A256629 nonn %O A256629 1,1 %A A256629 _Michel Lagneau_, Apr 05 2015 %E A256629 Missing terms 91080 and 117600 added by _Zachary Sizer_, Jan 02 2025