This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256630 #28 Apr 11 2020 05:29:46 %S A256630 142201,1422010,11141110,11411110,11412021,14220100,20323421,21024111, %T A256630 101203421,110141011,110142201,111411100,114111100,114120210, %U A256630 120013421,141433102,142201000,203234210,210241110,1012034210,1101410011,1101410110,1101422010,1114111000 %N A256630 Numbers n such that the decimal expansions of both n and n^2 have 0 as smallest digit and 4 as largest digit. %H A256630 Chai Wah Wu, <a href="/A256630/b256630.txt">Table of n, a(n) for n = 1..10000</a> %t A256630 fQ[n_] := Block[{c = DigitCount@ n}, And[Plus @@ Take[c, {5, 9}] == 0, c[[4]] > 0, c[[10]] > 0]]; Select[Range@ 10000000, fQ@ # && fQ[#^2] &] (* _Michael De Vlieger_, Apr 12 2015 *) %o A256630 (PARI) is(n) = vecmin(digits(n))==0 && vecmin(digits(n^2))==0 && vecmax(digits(n))==4 && vecmax(digits(n^2))==4 %o A256630 (Python) %o A256630 from itertools import product %o A256630 A256630_list = [] %o A256630 for l in range(11): %o A256630 for a in ('1','2','3','4'): %o A256630 for b in product('01234',repeat = l): %o A256630 for c in ('0','1','2'): %o A256630 s = a+''.join(b)+c %o A256630 if '0' in s and '4' in s: %o A256630 n = int(s) %o A256630 s2 = set(str(n**2)) %o A256630 if {'0','4'} <= s2 <= {'0','1','2','3','4'}: %o A256630 A256630_list.append(n) %o A256630 print(A256630_list) # _Chai Wah Wu_, Apr 17 2015 %Y A256630 Cf. A256631, A256633, A256634, A256708, A256709, A256889. %Y A256630 Subsequence of A136810. %K A256630 nonn,base %O A256630 1,1 %A A256630 _Felix Fröhlich_, Apr 05 2015 %E A256630 More terms from _Alois P. Heinz_, Apr 16 2015