This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256643 #35 May 05 2023 14:24:08 %S A256643 166,332,333,499,335,336,502,668,669,505,176,177,343,509,180,346,512, %T A256643 513,679,515,516,187,353,354,190,356,357,523,689,360,526,692,198,364, %U A256643 200,201,367,533,534,370,536,537,703,374,45,211,377,378,544,380,381,547 %N A256643 a(n) = B*C*(n mod A) + 2*A*C*(n mod B) + 3*A*B*(n mod C) with A=3, B=5, C=11. %C A256643 After 0 it cycles again from 166 (a(165)=0 so there are 165 (A*B*C) terms). %C A256643 This is another variation on A256496, where a(n) = B*C*(n mod A) + A*C*(n mod B) + A*B*(n mod C), modified to take the values A=3, B=5, C=11 and still maintain the equivalence a(n) mod ABC = n mod ABC. %C A256643 Here modification is required (to maintain that equivalence) so that 'BC' + 'AC' + 'AB' = ABC + 1 where 'BC', 'AC' and 'AB' are the coefficients. Therefore, a(n)= B*C*(n mod A) + 2A*C*(n mod B) + 3A*B*(n mod C) so that 5*11 + 2*3*11 + 3*3*5 = 3*5*11 = 55 + 66 + 45 = 166. %C A256643 This is an example with 2 modifications. %H A256643 Ray Chandler, <a href="/A256643/b256643.txt">Table of n, a(n) for n = 1..1000</a> (first 165 terms from Bruno Berselli, full cycle) %H A256643 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (-2, -3, -3, -3, -2, -1, 0, 0, 0, 0, 1, 2, 3, 3, 3, 2, 1). %F A256643 G.f.: -x*(824*x^15 +2306*x^14 +4280*x^13 +5921*x^12 +7229*x^11 +7710*x^10 +7530*x^9 +6855*x^8 +6180*x^7 +5505*x^6 +4830*x^5 +3826*x^4 +2659*x^3 +1495*x^2 +664*x +166) / ((x -1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)*(x^10 +x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - _Colin Barker_, Apr 14 2015 %o A256643 (Magma) A:=3; B:=5; C:=11; [B*C*(n mod A)+2*A*C*(n mod B)+3*A*B*(n mod C): n in [1..165]]; // _Bruno Berselli_, Apr 14 2015 %Y A256643 Cf. A255818 for an example with 1 modification and A256668 for 3 modifications. %K A256643 nonn,easy %O A256643 1,1 %A A256643 _Aaron Kastel_, Apr 07 2015 %E A256643 Definition corrected by _Bruno Berselli_, Apr 14 2015