cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256644 Numbers of alternating permutations where numbers at odd positions and even positions are monotone respectively.

This page as a plain text file.
%I A256644 #47 Sep 08 2022 08:46:11
%S A256644 1,1,1,2,5,6,9,12,21,30,58,86,176,266,563,860,1861,2862,6294,9726,
%T A256644 21660,33594,75584,117574,266800,416026,950914,1485802,3417342,
%U A256644 5348882,12369287,19389692,45052517,70715342,165002462,259289582,607283492,955277402,2244901892
%N A256644 Numbers of alternating permutations where numbers at odd positions and even positions are monotone respectively.
%H A256644 Alois P. Heinz, <a href="/A256644/b256644.txt">Table of n, a(n) for n = 0..1000</a>
%H A256644 Ran Pan, <a href="http://www.math.ucsd.edu/~projectp/warmups/eQ.html">Exercise Q</a>, Project P
%F A256644 For n>3, a(n) = C(floor(n/2))+ C(floor((n-1)/2))+2, where C(n) is the n-th Catalan number, with a(0)=a(1)=a(2)=1 and a(3)=2.
%e A256644 a(5) = 6: (1,3,2,5,4), (1,4,2,5,3), (1,5,2,4,3), (3,4,2,5,1), (3,5,2,4,1), (4,5,2,3,1).
%e A256644 a(6) = 9: (1,3,2,5,4,6), (1,4,2,5,3,6), (1,6,2,5,3,4), (3,4,2,5,1,6), (3,6,2,5,1,4), (4,6,2,5,1,3), (4,6,3,5,1,2), (5,6,2,4,1,3), (5,6,3,4,1,2).
%p A256644 C:= n-> binomial(2*n, n)/(n+1):
%p A256644 a:= n-> `if`(n<4, [1$3, 2][n+1], C(iquo(n, 2))+C(iquo(n-1, 2))+2):
%p A256644 seq(a(n), n=0..40);  # _Alois P. Heinz_, Apr 08 2015
%t A256644 Table[Which[n < 3, 1, n == 3, 2, True, CatalanNumber[Floor[n/2]] + CatalanNumber[Floor[(n - 1)/2]] + 2], {n, 0, 38}] (* _Michael De Vlieger_, Apr 07 2015 *)
%o A256644 (PARI) C(n) = binomial(2*n, n)/(n+1);
%o A256644 a(n) = if (n<3, 1, if (n==3, 2, C(n\2)+ C((n-1)\2)+2)); \\ _Michel Marcus_, Apr 07 2015
%o A256644 (PARI) a(n) = if (n<4, return(max(1,n-1))); binomial(n\2*2, n\2)/(n\2+1)*if(n%2, 2, (5*n-2)/(4*n-4)) + 2 \\ _Charles R Greathouse IV_, Apr 07 2015
%o A256644 (Magma) [1,1,1,2] cat [Catalan(Floor(n/2))+ Catalan(Floor((n-1)/2))+2: n in [4..40]]; // _Vincenzo Librandi_, Apr 08 2015
%Y A256644 Cf. A104722, A000111, A000108.
%K A256644 nonn
%O A256644 0,4
%A A256644 _Ran Pan_, Apr 07 2015