A256655 R(k), the minimal alternating Fibonacci representation of k, concatenated for k = 0, 1, 2,....
0, 1, 2, 3, 5, -1, 5, 8, -2, 8, -1, 8, 13, -5, 1, 13, -3, 13, -2, 13, -1, 13, 21, -8, 1, 21, -8, 2, 21, -5, 21, -5, 1, 21, -3, 21, -2, 21, -1, 21, 34, -13, 1, 34, -13, 2, 34, -13, 3, 34, -13, 5, -1, 34, -8, 34, -8, 1, 34, -8, 2, 34, -5, 34, -5, 1, 34, -3, 34
Offset: 0
Examples
R(0) = 0 R(1) = 1 R(2) = 2 R(3) = 3 R(4) = 5 - 1 R(9) = 13 - 5 + 1 R(25) = 34 - 13 + 5 - 1 R(64) = 89 - 34 + 13 - 5 + 1
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A000045, A255973 (trace), A256656 (numbers with positive trace), A256657 (numbers with nonpositive trace), A256663 (positive part of R(n)), A256664 (nonpositive part of R(n)), A256654, A256696 (minimal alternating binary representations), A255974 (minimal alternating triangular-number representations), A256789 (minimal alternating squares representations).
Programs
-
Mathematica
f[n_] = Fibonacci[n]; ff = Table[f[n], {n, 1, 70}]; s[n_] := Table[f[n + 2], {k, 1, f[n]}]; h[0] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[12]; r[0] = {0}; r[n_] := If[MemberQ[ff, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; Flatten[Table[r[n], {n, 0, 60}]]
Formula
R(F(k)^2) = F(2k-1) - F(2k-3) + F(2k-5) - ... + d*F(5) + (-1)^k, where d = (-1)^(k+1).
Comments