A256657 Numbers for which the minimal alternating Fibonacci representation has negative trace.
4, 6, 7, 10, 11, 12, 16, 18, 19, 20, 25, 26, 29, 31, 32, 33, 38, 40, 41, 42, 46, 47, 50, 52, 53, 54, 59, 61, 62, 65, 66, 67, 68, 72, 74, 75, 76, 80, 81, 84, 86, 87, 88, 93, 95, 96, 99, 100, 101, 105, 107, 108, 109, 110, 114, 116, 117, 120, 121, 122, 123, 127
Offset: 1
Examples
Let R(k) be the minimal alternating Fibonacci representation of k. The trace of R(k) is the last term. R(1) = 1, trace = 1 R(2) = 2, trace = 2 R(3) = 3, trace = 3 R(4) = 5 - 1, trace = -1 R(5) = 5, trace = 5 R(6) = 6 - 2, trace = -2
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}]; h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]]; g = h[18]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]] t = Table[Last[r[n]], {n, 0, 1000}]; (* A256656 *) Select[Range[200], Last[r[#]] > 0 &] (* A256656 *) Select[Range[200], Last[r[#]] < 0 &] (* A256657 *)
Comments