A256659 Rectangular array by antidiagonals: row n consists of numbers k such that -F(n+1) is the trace of the minimal alternating Fibonacci representation of k, where F = A000045 (Fibonacci numbers).
4, 7, 6, 12, 11, 10, 20, 19, 18, 16, 25, 32, 31, 29, 26, 33, 40, 52, 50, 47, 42, 38, 53, 65, 84, 81, 76, 68, 41, 61, 86, 105, 136, 131, 123, 110, 46, 66, 99, 139, 170, 220, 212, 199, 178, 54, 74, 107, 160, 225, 275, 356, 343, 322, 288, 59, 87, 120, 173, 259
Offset: 1
Examples
Northwest corner: 4 7 12 20 25 33 38 41 46 6 11 19 32 40 53 61 66 74 10 18 31 52 65 86 99 102 120 16 29 50 84 105 139 160 173 194 26 47 81 136 170 225 259 280 314
Programs
-
Mathematica
b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}]; h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]]; g = h[18]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; t = Table[Last[r[n]], {n, 0, 1000}]; (* A256656 *) TableForm[Table[Flatten[-1 + Position[t, b[n]]], {n, 2, 8}]] (* A256658 *) TableForm[Table[Flatten[-1 + Position[t, -b[n]]], {n, 2, 8}]] (* A256659 *)
Comments