This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256661 #9 Jun 27 2017 15:43:02 %S A256661 1,2,4,3,6,9,5,7,14,25,8,10,15,38,64,13,11,17,40,98,169,21,12,22,41, %T A256661 103,258,441,34,16,23,46,104,271,674,1156,55,18,24,59,106,273,708, %U A256661 1766,3025,89,19,27,61,119,274,713,1855,4622,7921,144,20,28,62,153 %N A256661 Rectangular array by antidiagonals: row n shows the numbers k such that R(k) consists of n terms, where R(k) is the minimal alternating Fibonacci representation of k. %C A256661 See A256655 for definitions. Every positive integer occurs exactly once. %C A256661 (row 1): A000045 (Fibonacci numbers) %C A256661 (col 1): A007598 (squared Fibonacci numbers) %C A256661 (col 2): A127546 (conjectured) %e A256661 Northwest corner: %e A256661 1 2 3 5 8 13 21 %e A256661 4 6 7 10 11 12 62 %e A256661 9 14 15 17 22 23 24 %e A256661 25 38 40 41 46 59 61 %e A256661 64 98 103 104 106 119 153 %e A256661 169 258 271 273 274 279 313 %e A256661 R(1) = 1, in row 1 %e A256661 R(2) = 2, in row 1 %e A256661 R(3) = 3, in row 1 %e A256661 R(4) = 5 - 1, in row 2 %e A256661 R(9) = 13 - 5 + 1, in row 3 %e A256661 R(25) = 34 - 13 + 5 - 1, in row 4 %e A256661 R(64) = 89 - 34 + 13 - 5 + 1, in row 5 %t A256661 b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}]; %t A256661 h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]]; %t A256661 g = h[23]; r[0] = {0}; %t A256661 r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; %t A256661 u = Table[Length[r[n]], {n, 1, 6000}]; %t A256661 TableForm[Table[Flatten[Position[u, k]], {k, 1, 9}]] %Y A256661 Cf. A000045, A256655, A007598, A127546. %K A256661 nonn,easy,tabl %O A256661 1,2 %A A256661 _Clark Kimberling_, Apr 08 2015