A256662 Sum of absolute values of terms in the minimal alternating Fibonacci representation of n.
0, 1, 2, 3, 6, 5, 10, 9, 8, 19, 16, 15, 14, 13, 30, 31, 26, 27, 24, 23, 22, 21, 48, 49, 50, 53, 42, 43, 44, 39, 40, 37, 36, 35, 34, 77, 78, 79, 82, 81, 86, 85, 68, 69, 70, 71, 74, 63, 64, 65, 60, 61, 58, 57, 56, 55, 124, 125, 126, 129, 128, 133, 132, 131
Offset: 0
Examples
Minimal alternating Fibonacci representations: R(0) = 0 R(1) = 1 R(2) = 2 R(3) = 3 R(4) = 5 - 1, so that a(4) = 6. R(9) = 13 - 5 + 1, so that a(9) = 19.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}]; h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]]; g = h[23]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; Table[Total[Abs[r[n]]], {n, 0, 100}] (* A256662 *) Table[Total[(Abs[r[n]] + r[n])/2], {n, 0, 100}] (* A256663 *) Table[Total[(Abs[r[n]] - r[n])/2], {n, 0, 100}] (* A256664 *)
Comments