cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256682 Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-5,-4].

This page as a plain text file.
%I A256682 #12 Feb 16 2025 08:33:25
%S A256682 4,6,5,3,2,3,7,7,6,1,7,4,3,1,4,2,4,4,1,7,1,4,5,9,8,1,5,1,1,4,8,2,0,7,
%T A256682 3,6,3,7,1,9,0,6,9,4,1,6,1,3,3,8,6,8,5,5,5,1,7,2,5,8,6,8,0,7,9,5,4,1,
%U A256682 5,6,5,4,0,7,5,8,8,6,7,9,1,7,0,0,3,0,9,3,6,3,8,1,7,9,4,4,6,7,6,3,8,0,1,7,3
%N A256682 Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-5,-4].
%H A256682 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>
%H A256682 Wikipedia, <a href="http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function">Particular values of the Gamma Function</a>
%F A256682 Solution to PolyGamma(x) = 0 in the interval [-5,-4]
%e A256682 Gamma(-4.653237761743142441714598151148207363719069416133868555...)
%e A256682 = -0.05277963958731940076048357076290307426383130501056893...
%t A256682 digits = 105; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -9/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First
%Y A256682 Cf. A030169, A030171, A175472, A175473, A256681, A256683-A256687.
%K A256682 nonn,cons
%O A256682 1,1
%A A256682 _Jean-François Alcover_, Apr 08 2015