A256685 Decimal expansion of the [negated] abscissa of the Gamma function local minimum in the interval [-8,-7].
7, 6, 8, 7, 7, 8, 8, 3, 2, 5, 0, 3, 1, 6, 2, 6, 0, 3, 7, 4, 4, 0, 0, 9, 8, 8, 9, 1, 8, 4, 3, 7, 0, 4, 9, 5, 3, 6, 8, 3, 8, 2, 1, 7, 9, 7, 8, 8, 2, 6, 4, 3, 3, 5, 9, 4, 0, 8, 4, 8, 6, 9, 9, 9, 1, 2, 5, 9, 7, 9, 4, 3, 4, 9, 4, 1, 7, 2, 7, 7, 6, 5, 6, 1, 3, 9, 0, 1, 9, 8, 2, 9, 5, 3, 2, 8, 1, 5, 8, 3, 1, 5, 7, 8, 7, 9
Offset: 1
Examples
Gamma(-7.6877883250316260374400988918437049536838217978826433594...) = 0.0001818784449094041881014174426244626530404358160668...
Links
- Eric Weisstein's MathWorld, Gamma Function
- Wikipedia, Particular values of the Gamma Function
Programs
-
Mathematica
digits = 106; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -15/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First
Formula
Solution to PolyGamma(x) = 0 in the interval [-8,-7].