cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256688 From third root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose cube is zeta function; sequence gives numerator of b(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 14, 2, 1, 1, 2, 1, 1, 1, 35, 1, 2, 1, 2, 1, 1, 1, 14, 2, 1, 14, 2, 1, 1, 1, 91, 1, 1, 1, 4, 1, 1, 1, 14, 1, 1, 1, 2, 2, 1, 1, 35, 2, 2, 1, 2, 1, 14, 1, 14, 1, 1, 1, 2, 1, 1, 2, 728, 1, 1, 1, 2, 1, 1, 1, 28, 1, 1, 2, 2, 1, 1, 1, 35, 35, 1, 1, 2, 1, 1, 1, 14, 1, 2, 1, 2, 1, 1, 1, 91, 1, 2, 2, 4
Offset: 1

Views

Author

Wolfgang Hintze, Apr 08 2015

Keywords

Comments

Dirichlet g.f. of A256688(n)/A256689(n) is (zeta(x))^(1/3).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

Examples

			b(1), b(2), ... = 1, 1/3, 1/3, 2/9, 1/3, 1/9, 1/3, 14/81, 2/9, 1/9, 1/3, 2/27, 1/3, 1/9, 1/9, 35/243, ...
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 3;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1,#1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256688 *)
    den = Denominator[t] (* A256689 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(1/3))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 3;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A256688(j)/A256689(j) ~ n / (Gamma(1/3) * log(n)^(2/3)) * (1 + (2*(1 - gamma/3))/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025