cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256693 From fifth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is zeta function; sequence gives denominator of b(n).

Table of values

n a(n)
1 1
2 5
3 5
4 25
5 5
6 25
7 5
8 125
9 25
10 25
11 5
12 125
13 5
14 25
15 25
16 625
17 5
18 125
19 5
20 125
21 25
22 25
23 5
24 625
25 25
26 25
27 125
28 125
29 5
30 125
31 5
32 15625
33 25
34 25
35 25
36 625
37 5
38 25
39 25
40 625
41 5
42 125
43 5
44 125
45 125
46 25
47 5
48 3125
49 25
50 125
51 25
52 125
53 5
54 625
55 25
56 625
57 25
58 25
59 5
60 625
61 5
62 25
63 125
64 78125
65 25
66 125
67 5
68 125
69 25
70 125
71 5
72 3125
73 5
74 25
75 125
76 125
77 25
78 125
79 5
80 3125
81 625
82 25
83 5
84 625
85 25
86 25
87 25
88 625
89 5
90 625
91 25
92 125
93 25
94 25
95 25
96 78125
97 5
98 125
99 125
100 625

List of values

[1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 15625, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125, 25, 125, 5, 625, 25, 625, 25, 25, 5, 625, 5, 25, 125, 78125, 25, 125, 5, 125, 25, 125, 5, 3125, 5, 25, 125, 125, 25, 125, 5, 3125, 625, 25, 5, 625, 25, 25, 25, 625, 5, 625, 25, 125, 25, 25, 25, 78125, 5, 125, 125, 625]