This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256695 #20 Aug 08 2025 01:54:29 %S A256695 12,48,108,192,300,432,588,768,972,1008,1200,1452,1728,2028,2352,2448, %T A256695 2520,2700,2772,3060,3072,3468,3888,4032,4332,4800,5292,5808,6348, %U A256695 6912,7500,8112,8748,9072,9408,9792,10080,10092,10800,11088,11532,11628,12240,12288 %N A256695 Integer areas A of integer-sided triangles (a, b, c) such that the area of the triangle (a+b, a+c, b+c) is also an integer. %C A256695 The areas of the primitive triangles are 12, 2520, 2772, 3060, 4032, 5808, 9072, 11088, 11628, 17136, 24948, 41580, ... %C A256695 The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. %C A256695 The sequence A135453 (numbers of the form 12*n^2) is included in the sequence because a(1) = 12 is a primitive triangle of the subsequence k^2*a(1), k=1,2,3,... %C A256695 The following table gives the first values (A, A', a, b, c) where A is the integer area of the triangle (a, b, c), A' is the integer area of the triangle (a+b, a+c, b+c). %C A256695 +-------+--------+------+------+------+ %C A256695 | A | A' | a | b | c | %C A256695 +-------+--------+------+------+------+ %C A256695 | 12 | 60 | 5 | 5 | 8 | %C A256695 | 48 | 240 | 10 | 10 | 16 | %C A256695 | 108 | 540 | 15 | 15 | 24 | %C A256695 | 192 | 960 | 20 | 20 | 32 | %C A256695 | 300 | 1500 | 25 | 25 | 40 | %C A256695 | 432 | 2160 | 30 | 30 | 48 | %C A256695 | 588 | 2940 | 35 | 35 | 56 | %C A256695 | 768 | 3840 | 40 | 40 | 64 | %C A256695 | 972 | 4860 | 45 | 45 | 72 | %C A256695 +-------+--------+------+------+------+ %C A256695 We find a majority of isosceles triangles, but there is a subsequence of non-isosceles triangles with areas 2520, 3060, 10080, 11088, ... %C A256695 +--------+----------+-------+-------+-------+ %C A256695 | A | A' | a | b | c | %C A256695 +--------+----------+-------+-------+-------+ %C A256695 | 2520 | 18270 | 29 | 174 | 175 | %C A256695 | 3060 | 33150 | 39 | 221 | 250 | %C A256695 | 10080 | 73080 | 58 | 348 | 350 | %C A256695 | 11088 | 64350 | 150 | 169 | 275 | %C A256695 | 12240 | 12240 | 78 | 442 | 500 | %C A256695 | 17136 | 92820 | 168 | 221 | 325 | %C A256695 | 41580 | 183150 | 250 | 333 | 407 | %C A256695 +--------+----------+-------+-------+-------+ %e A256695 a(1) = 12 because, for (a,b,c) = (5, 5, 8) => s = (5+5+8)/2 = 9, and %e A256695 A = sqrt(9(9-5)(9-5)(9-8)) = sqrt(144) = 12 and the triangle (5+5, 5+8, 5+8) = (10, 13, 13)=> s1 = (10+13+13)/2 = 18, and A1 = sqrt(18(18-10)(18-13)(18-13)) = sqrt(3600) = 60 is an integer. %t A256695 nn=1000;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);u=a+b;v=a+c;w=b+c;s1=(u+v+w)/2;area3=s1(s1-u)(s1-v)(s1-w);If[area2>0&&area3>0&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[area3]], AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst] %Y A256695 Cf. A135453, A188158. %K A256695 nonn %O A256695 1,1 %A A256695 _Michel Lagneau_, Apr 08 2015