A256699 Numbers with negative triangular trace.
2, 5, 7, 9, 11, 12, 14, 17, 18, 20, 22, 24, 25, 27, 30, 32, 33, 35, 37, 39, 41, 42, 44, 47, 49, 51, 52, 54, 56, 58, 60, 62, 63, 65, 68, 70, 72, 74, 75, 77, 81, 83, 85, 87, 88, 90, 92, 95, 97, 99, 101, 102, 104, 107, 110, 112, 114, 116, 117, 119, 121, 123
Offset: 1
Examples
R(0) = 0; trace = 0 R(1) = 1; trace = 1 R(2) = 3 - 1; trace = -1 R(3) = 3; trace = 3 R(4) = 6 - 3 + 1; trace = 1 R(5) = 6 - 1; trace = -1 R(6) = 6; trace = 6 R(7) = 10 - 3; trace = -3 Thus, 1, 3, 4, 6, ... have positive trace, and 2, 5, 7, .... have negative trace.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
b[n_] := n (n + 1)/2; bb = Table[b[n], {n, 0, 1000}]; s[n_] := Table[b[n], {k, 1, n}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]] Table[Last[r[n]], {n, 0, 300}] (* A256697 *) Select[Range[200], Last[r[#]] > 0 &] (* A256698 *) Select[Range[200], Last[r[#]] < 0 &] (* A256699 *)
Comments