A256701 Positive part of the minimal alternating binary representation of n (defined at A245596).
1, 2, 4, 4, 9, 8, 8, 8, 17, 18, 20, 16, 17, 16, 16, 16, 33, 34, 36, 36, 41, 40, 40, 32, 33, 34, 36, 32, 33, 32, 32, 32, 65, 66, 68, 68, 73, 72, 72, 72, 81, 82, 84, 80, 81, 80, 80, 64, 65, 66, 68, 68, 73, 72, 72, 64, 65, 66, 68, 64, 65, 64, 64, 64, 129, 130
Offset: 1
Examples
R(1) = 1; positive part 1, nonpositive part 0 R(2) = 2; positive part 2, nonpositive part 0 R(3) = 4 - 1; positive part 4, nonpositive part 1 R(11) = 16 - 8 + 4 - 1; positive part 16+4 = 20; nonpositive part 8 + 1 = 9
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
b[n_] := 2^n; bb = Table[b[n], {n, 0, 40}]; s[n_] := Table[b[n + 1], {k, 1, b[n]}]; h[0] = {1}; h[n_] := Join[h[n - 1], s[n - 1]]; g = h[10]; Take[g, 100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]] Table[Total[Abs[r[n]]], {n, 1, 100}] (* A073122 *) u = Table[Total[(Abs[r[n]] + r[n])/2], {n, 1, 100}] (* A256701 *) v = Table[Total[(Abs[r[n]] - r[n])/2], {n, 1, 100}] (* A256702 *)