A256702 Nonpositive part of the minimal alternating binary representation of n (defined at A256696).
0, 0, 1, 0, 4, 2, 1, 0, 8, 8, 9, 4, 4, 2, 1, 0, 16, 16, 17, 16, 20, 18, 17, 8, 8, 8, 9, 4, 4, 2, 1, 0, 32, 32, 33, 32, 36, 34, 33, 32, 40, 40, 41, 36, 36, 34, 33, 16, 16, 16, 17, 16, 20, 18, 17, 8, 8, 8, 9, 4, 4, 2, 1, 0, 64, 64, 65, 64, 68, 66, 65, 64, 72
Offset: 1
Examples
R(1) = 1; positive part 1, nonpositive part 0. R(2) = 2; positive part 2, nonpositive part 0. R(3) = 4 - 1; positive part 4, nonpositive part 1. R(11) = 16 - 8 + 4 - 1; positive part 16 + 4 = 20; nonpositive part 8 + 1 = 9.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
b[n_] := 2^n; bb = Table[b[n], {n, 0, 40}]; s[n_] := Table[b[n + 1], {k, 1, b[n]}]; h[0] = {1}; h[n_] := Join[h[n - 1], s[n - 1]]; g = h[10]; Take[g, 100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]] Table[Total[Abs[r[n]]], {n, 1, 100}] (* A073122 *) u = Table[Total[(Abs[r[n]] + r[n])/2], {n, 1, 100}] (* A256701 *) v = Table[Total[(Abs[r[n]] - r[n])/2], {n, 1, 100}] (* A256702 *)