This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256739 #24 Jul 25 2025 19:01:57 %S A256739 1,3,2,6,4,6,6,12,10,12,10,12,12,10,8,24,16,30,18,24,16,30,22,24,28, %T A256739 20,18,20,28,24,30,48,40,48,32,60,36,54,40,48,40,48,42,60,40,58,46,48, %U A256739 54,36,32,40,52,54,56,40,40,36,58,48,60,34,32,96,72,120,66 %N A256739 Unique sequence satisfying SumXOR_{d divides n} a(d) = n for any n>0, where SumXOR is the analog of summation under the binary XOR operation. %C A256739 Replacing "SumXOR" by "Sum" in the name leads to the Euler totient function (A000010). %C A256739 Replacing "SumXOR" by "Product" in the name leads to the exponential of Mangoldt function (A014963). %C A256739 a(p) = p-1 for any prime p>2. %C A256739 a(2^k) = 2^k+2^(k-1) for any k>0. %C A256739 A070939(a(n)) = A070939(n) for any n>0. %C A256739 The graph of this sequence is quite remarkable. - _N. J. A. Sloane_, Apr 09 2015 %C A256739 Xor-Moebius transform of natural numbers, A000027. See A295901 for a list of some of the properties of this transform. - _Antti Karttunen_, Dec 29 2017 %H A256739 Paul Tek, <a href="/A256739/b256739.txt">Table of n, a(n) for n = 1..16383</a> %H A256739 Paul Tek, <a href="/A256739/a256739.gp.txt">PARI program for this sequence</a> %F A256739 a(n) = n XOR ( SumXOR_{d divides n and d < n} a(d) ) for any n>0. %F A256739 From _Antti Karttunen_, Dec 29 2017: (Start) %F A256739 a(n) = SumXOR_{d|n} A296206(d). %F A256739 a(n) = n XOR A296207(n), where XOR is bitwise exclusive or, A003987. %F A256739 (End) %t A256739 a = Table[0, {16383}]; %t A256739 Do[pa = n; Do[pa = BitXor[pa, a[[d]]], {d, Divisors[n]}]; a[[n]] = pa, {n, Length[a]}]; %t A256739 a (* _Jean-François Alcover_, Oct 18 2019, after _Paul Tek_ *) %o A256739 (PARI) \\ See Links section. %o A256739 (PARI) A256739(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, d))); (v); } \\ _Antti Karttunen_, Dec 29 2017, after code in A295901. %Y A256739 Cf. A000010, A003987, A014963, A295901, A296206, A296207, A297107 (fixed points). %K A256739 nonn,base,look %O A256739 1,2 %A A256739 _Paul Tek_, Apr 09 2015