cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256750 Start with n, and repeatedly apply the arithmetic derivative A003415. |a(n)| = the number of iterations to reach 0 (then a(n) is taken nonnegative) or a number having a factor of the form p^p with prime p, in which case a(n) = -|a(n)|.

Original entry on oeis.org

0, 1, 2, 2, 0, 2, 3, 2, 0, 4, 3, 2, 0, 2, 5, -1, 0, 2, 5, 2, 0, 4, 3, 2, 0, 4, -2, 0, 0, 2, 3, 2, 0, 6, 3, -1, 0, 2, 5, -1, 0, 2, 3, 2, 0, -2, 5, 2, 0, 6, -3, -1, 0, 2, 0, -1, 0, 4, 3, 2, 0, 2, 7, -2, 0, 6, 3, 2, 0, -3, 3, 2, 0, 2, -2, -2, 0, 6, 3, 2, 0, 0, 3, 2, 0, 4, -3, -1, 0, 2, -2, -1, 0, 4, 7, -1, 0, 2, 7, -3
Offset: 0

Views

Author

M. F. Hasler, Apr 09 2015

Keywords

Comments

Under iterations of the arithmetic derivative, the orbit of some numbers ends in zero, and the orbit of all others (I conjecture) reaches a number of the form m*p^p with prime p, from where on it keeps this form and grows to infinity iff m>1, or remains at this fixed point if m=1.
This is an extension of the sequence A099307 which counts the steps to reach 0 or yields 0 if this never happens.

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099308 (numbers whose k-th arithmetic derivative is zero for some k, positions of terms > 0 after the initial 0), A099309 (numbers whose k-th arithmetic derivative is nonzero for all k, positions of terms <= 0 after the initial 0), A359547 (positions of negative terms), A327934 (positions of -1's).
Cf. also A327966, A327969 (A328324).

Programs

  • Mathematica
    w = {}; nn = 2^16; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; a3415[n_] := a3415[n] = Which[n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[n]]]{0, 1}~Join~Reap[Do[Which[PrimeQ[n], Sow[2], MemberQ[w, n], Sow[0], True, Sow@ If[#[[-1]] == 0, Length[#] - 1, -Length[#] + 1] &[NestWhileList[a3415, n, And[! Divisible[#, 4], FreeQ[w, #]] &, 1]]], {n, 2, nn}] ][[-1, -1]] (* Michael De Vlieger, Jan 04 2023 *)
  • PARI
    a(n,c=0)={n&&until(!n=factorback(n~)*sum(i=1,#n,n[2,i]/n[1,i]),for(i=1,#n=factor(n)~,n[1,i]>n[2,i]||return(-c));c++);c}

Formula

a(n) = 0 <=> n = 0 or n = m*p^p for some prime p and some m >= 1 (which is a fixed point iff m = 1).
a(n) = 1 <=> n = 1.
a(n) = 2 <=> n is prime.
a(n) <= 0 <=> n is in A099309 U {0}. If n > 0, the iterations of A003415 applied to n end in a nonzero fixed point or grow to infinity.
a(n) > 0 <=> n is in A099308 \ {0}.
A099307(n) = min { 0, a(n) }.