This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256758 #39 Mar 04 2023 05:01:18 %S A256758 1,2,3,7,19,47,163,487,1307,2879,19683,59049,177147,531441,1594323, %T A256758 4782969,14348907,43046721,86093443,344373773,688747547,3486784401 %N A256758 Position of first appearance of n in A256757. %C A256758 Smallest number m such that the trajectory of m under iteration of A007733 takes n steps to reach the fixed point. %C A256758 The terms a(1)..a(9) are primes. The next eight terms are powers of 3, so that for n=10..17, a(n)=3^(n-1), but this apparently established pattern breaks at a(18), which is again a prime. %t A256758 A007733 = Function[n, MultiplicativeOrder[2, n/(2^IntegerExponent[n, 2])]]; %t A256758 A256757 = Function[n, k = 0; m = n; While[m > 1, m = A007733[m]; k++]; k]; %t A256758 a = Function[n, t = 1; While[A256757[t] < n , t++]; t]; Table[a[n], {n, 0, 9}] (* _Ivan Neretin_, Apr 13 2015 *) %o A256758 (PARI) a007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); %o A256758 a256757(n) = {if (n==1, return(0)); nb = 1; while((n = a007733(n)) != 1, nb++); nb; } %o A256758 a(n) = {k = 1; while(a256757(k) != n, k++); k;} \\ _Michel Marcus_, Apr 11 2015 %o A256758 (Haskell) %o A256758 import Data.List (elemIndex); import Data.Maybe (fromJust) %o A256758 a256758 = (+ 1) . fromJust . (`elemIndex` a256757_list) %o A256758 -- _Reinhard Zumkeller_, Apr 13 2015 %Y A256758 Cf. A007733, A007755 (similarly built upon the totient function), A173927 (similarly built upon the Carmichael lambda function), A256757. %K A256758 nonn,more %O A256758 0,2 %A A256758 _Ivan Neretin_, Apr 09 2015 %E A256758 a(15)-a(18) from _Michel Marcus_, Apr 11 2015 %E A256758 a(19)-a(21) from _Amiram Eldar_, Mar 04 2023