A256790 Number of terms in the minimal alternating squares representation of n.
1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 4, 3, 2, 3, 3, 2, 1, 3, 4, 4, 3, 2, 3, 3, 2, 1, 5, 2, 3, 4, 4, 3, 2, 3, 3, 2, 1, 3, 4, 5, 2, 3, 4, 4, 3, 2, 3, 3, 2, 1, 4, 4, 3, 4, 5, 2, 3, 4, 4, 3, 2, 3, 3, 2, 1, 2, 3, 4, 4, 3, 4, 5, 2, 3, 4, 4, 3, 2, 3, 3, 2, 1, 5, 4, 2, 3
Offset: 0
Examples
R(0) = 0, so a(0) = 1; R(1) = 1, so a(1) = 1; R(2) = 4 - 2, so a(2) = 2; R(7) = 9 - 4 + 2, so a(7) = 3; R(89) = 100 - 16 + 9 - 4, so a(89) = 4.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A256789.
Programs
-
Mathematica
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}]; s[n_] := Table[b[n], {k, 1, 2 n - 1}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; Table[r[n], {n, 0, 120}] (* A256789 *) Flatten[Table[Length[r[n]], {n, 0, 1000}]] (* A256790 *)
Comments