A256791 Trace of n in the minimal alternating squares representation of n.
0, 1, -2, -1, 4, -4, 1, 2, -1, 9, -1, 4, -4, 1, 2, -1, 16, 1, -2, -1, 4, -4, 1, 2, -1, 25, 1, -9, 1, -2, -1, 4, -4, 1, 2, -1, 36, 4, -4, 1, -9, 1, -2, -1, 4, -4, 1, 2, -1, 49, -2, -1, 4, -4, 1, -9, 1, -2, -1, 4, -4, 1, 2, -1, 64, -16, 1, -2, -1, 4, -4, 1, -9
Offset: 0
Examples
R(0) = 0, so a(0) = 0; R(1) = 1, so a(1) = 1; R(2) = 4 - 2, so a(2) = -2; R(7) = 9 - 4 + 2, so a(7) = 2; R(89) = 100 - 16 + 9 - 4, so a(89) = -4.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
Crossrefs
Cf. A256789.
Programs
-
Mathematica
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}]; s[n_] := Table[b[n], {k, 1, 2 n - 1}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; Table[r[n], {n, 0, 120}] (* A256789 *) Flatten[Table[Last[r[n]], {n, 0, 100}]] (* A256791 *)
Comments