A256793 Numbers whose minimal alternating squares representation has positive trace.
2, 3, 5, 8, 10, 12, 15, 18, 19, 21, 24, 27, 29, 30, 32, 35, 38, 40, 42, 43, 45, 48, 50, 51, 53, 55, 57, 58, 60, 63, 65, 67, 68, 70, 72, 74, 75, 77, 80, 83, 84, 86, 87, 89, 91, 93, 94, 96, 99, 101, 104, 105, 107, 108, 110, 112, 114, 115, 117, 120, 122, 124
Offset: 1
Examples
R(1) = 1; trace = 1, positive. R(2) = 4 - 2; trace = -2, negative. R(3) = 4 - 1; trace = -1, negative.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}]; s[n_] := Table[b[n], {k, 1, 2 n - 1}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; Table[r[n], {n, 0, 120}] (* A256789 *) u = Flatten[Table[Last[r[n]], {n, 1, 1000}]]; (* A256791 *) Select[Range[800], u[[#]] > 0 &] (* A256792 *) Select[Range[800], u[[#]] < 0 &] (* A256793 *)
Comments